
Retrieval-based Neural Source Code Summarization

Jian Zhang∗
SKLSDE Lab, Beihang University,

China
zhangj@act.buaa.edu.cn

Xu Wang∗†
SKLSDE Lab, Beihang University,

China
wangxu@act.buaa.edu.cn

Hongyu Zhang
The University of Newcastle,

Australia
hongyu.zhang@newcastle.edu.au

Hailong Sun∗
SKLSDE Lab, Beihang University,

China
sunhl@act.buaa.edu.cn

Xudong Liu∗
SKLSDE Lab, Beihang University,

China
liuxd@act.buaa.edu.cn

ABSTRACT
Source code summarization aims to automatically generate concise
summaries of source code in natural language texts, in order to help
developers better understand and maintain source code. Traditional
work generates a source code summary by utilizing information
retrieval techniques, which select terms from original source code
or adapt summaries of similar code snippets. Recent studies adopt
Neural Machine Translation techniques and generate summaries
from code snippets using encoder-decoder neural networks. The
neural-based approaches prefer the high-frequency words in the
corpus and have trouble with the low-frequency ones. In this paper,
we propose a retrieval-based neural source code summarization
approach where we enhance the neural model with the most sim-
ilar code snippets retrieved from the training set. Our approach
can take advantages of both neural and retrieval-based techniques.
Specifically, we first train an attentional encoder-decoder model
based on the code snippets and the summaries in the training set;
Second, given one input code snippet for testing, we retrieve its
two most similar code snippets in the training set from the aspects
of syntax and semantics, respectively; Third, we encode the input
and two retrieved code snippets, and predict the summary by fus-
ing them during decoding. We conduct extensive experiments to
evaluate our approach and the experimental results show that our
proposed approach can improve the state-of-the-art methods.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.
KEYWORDS
Source code summarization, Information retrieval, Deep neural
network

∗Also with Beijing Advanced Innovation Center for Big Data and Brain Computing,
Beijing, China.
†Corresponding author: Xu Wang, wangxu@act.buaa.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380383

ACM Reference Format:
Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based Neural Source Code Summarization. In 42nd International
Conference on Software Engineering (ICSE ’20), May23–29, 2020, Seoul, Repub-
lic of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3377811.3380383

1 INTRODUCTION
Source code summarization aims to generate summaries, which are
concise descriptions of source code and are often presented in the
form of code comments. Summaries are important for understand-
ing and maintaining source code. Developers often spend a lot of
time on reading and comprehending programs [11, 32, 33, 51] when
there is no good software documentation [31, 53]. However, well-
commented projects are few [12, 26] and manually writing source
code comments is tedious and time-consuming. Also, comments
should evolve with the evolution of source code [14], which could
incur more maintenance cost. Therefore, it is important to explore
automatic source code summarization techniques [42].

Information Retrieval (IR) has been widely used in automatic
source code summarization [13, 18, 19, 46, 60, 61]. The IR tech-
niques are used to select appropriate terms from the original code
snippets for producing term-based summaries. For example, Haiduc
et al. [18, 19] adopted Latent Semantic Indexing (LSI) and Vector
Space Model (VSM) to choose good terms from source code and
produce source code summaries. Eddy et al. [13] further improved
this method through topic modeling. Rodeghero et al. [46] modified
the term weights of VSM through eye-tracking and obtained bet-
ter summaries. Besides the term-based summaries, summaries can
be also generated from the comments of similar code. Since code
duplication [27, 28, 35] is common in large-scale code repositories,
code clone techniques are adopted to retrieve similar code snippets
from existing code repositories or Q&A sites. The comments of the
similar code can be adapted for generating a new summary [60, 61].

Recent work on Neural Machine Translation (NMT) [4] shows
that neural source code summarization is promising [21, 23, 24,
34, 55]. These neural models usually follow an encode-decoder
framework. For instance, Iyer et al. [24] proposed an end-to-end
neural network, which can encode code snippets with an embedding
layer and decode them into natural language summaries through
a Long Short Term Memory (LSTM) [20] model with attention
mechanism. To incorporate different aspects of a code snippet,

https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu

many approaches encode the code snippet by extracting its API
sequence [23] or Abstract Syntax Tree (AST) [21, 34, 55].

As described above, IR-based methods can effectively leverage
the existing terms of the original code or summaries of similar
code snippets [13, 18, 19, 46, 60, 61], while NMT-based methods
generate summaries word-by-word from the whole corpus by di-
rectly maximizing the likelihood of the next word given the pre-
vious words [21, 23, 24, 34]. The NMT-based methods generally
prefer high-frequency words in the corpus and may have trouble
with low-frequency words [3, 64]. That is, if the ground-truth sum-
maries contain words that are rare in the corpus, the NMT-based
methods may ignore these words and produce wrong results. A
more recent study on commit message generation [37] found that
a very simple retrieval-based method can outperform a carefully
designed NMT model. What is more, in the community of natural
language processing (NLP), Zhang et al. [64] revealed that NMT
model is comparatively weak in generating infrequent n-grams
because it tends to generate more frequent n-grams for natural
language translation. While in practice, as our experiments show
(Section 3), 80.6%/77.3% summaries contain low-frequency words
(frequency≤100) for 108,726 Python and 69,708 Java code snippets,
respectively. Simply increasing data size cannot help mitigate such
problem since the frequencies of common words will increase more
quickly than rare words and new low-frequency words may be
exposed.

Since the summaries of similar code snippets from IR-based
methods are reusable [60, 61], the words in the expected summaries
(including the low-frequency ones) are also highly probable to
appear in them. For example, for the code snippet in Figure 1, we
retrieve two most similar code snippets and their summaries, where
one is similar with respect to syntax and the other is similar with
respect to semantics. We can see that the low-frequency word “iis”
(which is a web server developed by Microsoft) also appears in
the retrieved summaries, but is ignored by NMT. In contrast, the
high-frequency word “create” can be captured by NMT. Clearly, it is
desirable to have a hybrid approach that combines the NMT-based
and IR-based methods and simultaneously incorporates both the
high-frequency words in the corpus and the low-frequency words
in the summaries of the similar code snippets.

In this paper, we propose a novel neural architecture namely
Retrieval-based Neural Source Code Summarizer (Rencos), which
can take advantages of both the NMT-based methods and the
retrieval-based methods. More specifically, we first train an at-
tentional encoder-decoder model to obtain an encoder for all code
samples and a decoder for generating natural language summaries;
Second, given an input source code snippet, we retrieve the most
similar code snippets from the training set. In this work, we ob-
tain two most similar code snippets based on the syntax-level and
semantics-level information of the source code, respectively. For
syntactic level, we parse code snippets into ASTs and calculate
their similarities based on ASTs. For semantic level, we reuse the
trained encoder to embed code snippets with semantic vectors and
compute the similarities based on these vectors. Finally, during
the testing, Rencos uses the trained model to encode the input and
the retrieved two code snippets as context vectors. It then decodes
them simultaneously, and at each time step it adjusts the condi-
tional probability of the next word using the similarity values and

Ground truth: create an iis application .
Syntactic retrieval: remove an iis application .
Semantic retrieval: create an iis virtual directory .
NMT: create the new app .

def create_app(name, site, sourcepath, apppool=None):
pscmd = list()
pscmd.append("New-WebApplication -Name '{0}' -

Site'{1}'".format(name,site))
pscmd.append(" -PhysicalPath '{0}'".format(sourcepath))
if apppool:

pscmd.append(" -applicationPool '{0}'".format(apppool))
cmd_ret = _srvmgr(str().join(pscmd))
if cmd_ret['retcode'] == 0:

if name in list_apps(site): return True
return False

Figure 1: An example of NMT-based and IR-based source
code summarization, where the correct words are marked
in red

the conditional probabilities from the retrieved two code snippets.
In this way, it trains a classical NMT model and incorporates the
retrieved information to enhance the prediction results of the NMT
model.

We conduct extensive experiments on two real-world datasets,
and the results demonstrate that our approach is better than those
using only IR-based methods or NMT-based methods. The proposed
approach also outperforms the state-of-the-art work with respect to
four widely-used quantitative metrics (BLEU, ROUGE-L, METEOR,
and CIDER). Furthermore, we also perform a human evaluation by
posting 900 micro-tasks and hiring 129 workers through Amazon
Mechanical Turk (AMT). The results further confirm the correctness
of the summaries generated by our approach.

Our main contributions are outlined as follows:

• We propose a novel retrieval-based neural architecture to en-
hance the NMTmodel for summarizing source code with the
help of most similar code snippets. To the best of our knowl-
edge, this is the first work that combines retrieval-based and
NMT-based methods in source code summarization;

• We conduct extensive experiments to evaluate our approach
on two real-world datasets. We also perform a human evalu-
ation through Amazon Mechanical Turk (AMT). All results
confirm that the proposed approach is effective and outper-
forms the state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2
describes the details of our approach. We evaluate our approach in
Section 3. The threats to validity and related work are presented
in Section 4 and Section 5, respectively. Finally, we conclude our
work in Section 6.

2 OUR APPROACH
2.1 Overview
In this work, we propose one retrieval-based neural source code
summarization approach (Rencos), which can combine the strengths
of NMT model and retrieval-based methods for better source code
summarization. Unlike retrieval-based neural models in NLP [15,

Retrieval-based Neural Source Code Summarization ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

EncoderCode Summary
Attention(Code, Summary)

Attentional Encoder-Decoder Model

Code Traversal
Syntactic-level

(Code, Sequence)

Semantic-level
(Code, Vector)

Syntactic-level

Semantic-level

Input Code

</>

Summary

Offline—Training and Preparing Code Retrieval Base

Online—Testing

Decoder

Search

Retrieved similar
code snippets

Retrieval-based
Neural Summary Generation

Encoder

DecoderEncoder

Encoder

AST parser

Encoder

Training Set

Code

Semantic Vector

Pooling

AST-based Token sequence

<…, …, …>

Lucene

Cosine
Similarity

</>

Code Retrieval Base

Decoder

Decoder

Fusion

Figure 2: The overall framework of our approach

64], our approach does not need additional encoders for the re-
trieved code with joint training [15], or the translation pieces (n-
grams in the retrieved target sentences) [64]. Our approach includes
an attentional encoder-decoder model, two similarity-based code
snippet retrieval components: syntactic-level and semantic-level,
and the retrieval-based neural summary generation. The online and
offline workflow is shown in Figure 2.

Specifically, during training, we first collect a large corpus con-
taining source code snippets and their natural language summaries
to train an attentional encoder-decoder model (Section 2.2). Such
an encoder-decoder model can be directly used for all inputs and
retrieved code snippets during the testing phase. In order to accel-
erate the code retrieval efficiency during testing, we offline parse
all the code snippets from the training set into ASTs and turn them
into syntactic-level token sequences by tree traversal. We also use
our trained encoder to embed code into semantic vectors by pooling.
All the code sequences and semantic vectors are stored as the code
retrieval base.

When testing online, given one input code snippet, we search
for two most similar ones from the code retrieval base (Section 2.3).
One is obtained by the commonly-used retrieval engine Lucene1
on the syntactic-level token sequences (i.e. syntactic-level), and the
other is selected with the highest cosine similarity based on the
semantic vectors (i.e. semantic-level). Then we produce the final
summary by fusing the results of the two retrieved code snippets
in our retrieval-based neural summary generation (Section 2.4).

2.2 Attentional Encoder-Decoder Model
Similar to the existing neural source code summarization meth-
ods [21, 23, 24, 34, 55], we build and train an attentional encoder-
decoder model, which includes only one encoder for avoiding the
high overhead of jointly training additional encoders for the re-
trieved code [15]. This model is trained only once, but can be used
1http://lucene.apache.org

in three places: encoding and decoding the input code snippets of
the testing set and the retrieved code snippets from the training set,
and helping retrieve the most similar code snippets at the semantic
level (as shown in Figure 2). In this way, our approach is simple
and efficient without extra training.

For the encoder, suppose there is one code snippet c consisting
of a sequence of wordsw1, · · · ,wn , an embedding layer is first used
to initialize these words by vectors:

xi =We
⊤wi , i ∈ [1,n], (1)

where n is the length of code snippet c ,We is the embedding matrix.
Then we use LSTM units [63] to encode the sequence of vectors
x = x1, · · · , xn into hidden states h1, · · · ,hn . For simplification, we
denote the LSTM unit as:

ht = LSTM(xt ,ht−1). (2)

We further employ Bidirectional LSTM (Bi-LSTM) [49] to capture
semantics in front and behind of the current position.

When decoding the code snippet and generating the i-th sum-
mary word, an attentional decoder first computes the context vector
vi over the sequence of hidden states h1, · · · ,ht , · · · ,hn according
to the following formula:

vi =
n∑
j=1

ai jhj . (3)

Here ai j is the attention weight of hj and computed by:

ai j =
exp(ei j)∑n

k=1 exp(eik)
, (4)

ei j = a(si−1,hj), (5)
where si−1 means the last hidden state of the decoder. In Equation
5, we use a Multi-Layer Perception (MLP) unit [44] as an alignment
model a [4]. At time i , the hidden state si of the decoder is updated
by:

si = LSTM(si−1,yi−1), (6)
whereyi−1 is the previous input vector. To jointly take into account
past alignment information, we exploit the input-feed approach
proposed by [40] which concatenates vi−1 with inputs yi−1.

p(yi |y1, . . . ,yi−1, c) = д(yi−1, si ,vi), (7)
where д is the generator function, which applies a MLP layer along
with so f tmax . We also adopt the beam search algorithm [59], that
is, at each time step t , we keep top-B best hypotheses where B is
the beam size.

Training such an attentional encoder-decoder model is to mini-
mize the loss function:

L(θ) = −

N∑
i=1

L∑
t=1

log P(yit |y
i
<t , c), (8)

where θ is the trainable parameters, N is the total number of train-
ing instances and L is the length of each target sequence. After
training with the pairs of code snippets and corresponding sum-
maries, we obtain an encoder which can represent code snippets,
and a decoder which is able to predict summaries word-by-word
by maximizing the conditional probabilities of the next words in
Equation 7. As a result, if we only use such an attentional encoder-
decoder model for source code summarization like the existing

http://lucene.apache.org

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu

work [21, 23, 24, 34, 55], the model will prefer the high-frequency
words and ignore the low-frequency words [3, 64] such as “iis” in
the example of Figure 1.

2.3 Similar Code Retrieval
Because of the existence of code duplication [27, 28, 35], previous
retrieval-based source code summarization work reused the sum-
maries of similar code snippets [60, 61]. Their experience suggests
that the words in expected summaries (including the low-frequency
ones) are also highly probable to appear in the summaries of similar
code. Based on the encoder-decoder model above, our approach can
incorporate the knowledge of similar code snippets and their sum-
maries from the training set for better prediction of low-frequency
words. For inclusion of as many useful low-frequency words as pos-
sible, we want to retrieve such similar code snippets from different
aspects. In this work, since the training set is very large, we aims to
design two efficient source code retrieval components based on the
syntax structure and the embedding semantics of source code. More
code retrieval methods can be easily integrated to our approach as
well.

2.3.1 Syntactic-level Source Code Retrieval.
Unlike plain texts, source code has its own syntax structure and

the syntactic information is important for finding similar source
code.

Such syntactic knowledge has been explored by previous work
on code clone detection [7, 25] based on costly tree-based matching
methods. Recent studies on the source code summarization [21, 34,
55] also considered the syntax structure of source code by adding
the AST-based RNN encoder for joint supervised training. In our
work, since the training set is very large and the unsupervised
method is preferred, we efficientlymeasure the syntactic similarities
of code snippets based on the token sequences of ASTs without
training.

Specifically, given one input code snippet from the testing set
and any one from the training set, we parse them to two ASTs and
then calculate the similarity between the two ASTs. However, if the
training set is very large (For example, the size N is more than 50k
in our experiment), it will incur much overhead to directly compute
the similarities based on tree matching algorithms such as Tree
Edit Distance [9], since the computational complexity is O(N 3).
A suitable compromise is to convert ASTs into token sequences
through tree traversal. Therefore, we parse the input code snippet
and all of the training set to ASTs, and further obtain their sequence
representations using the preorder traversal, as depicted in Figure 2.
Based on these sequences, we use an off-the-shelf and widely-used
search engine Lucene to efficiently retrieve the most similar code
snippet from the training set at the syntactic level.

2.3.2 Semantic-level Source Code Retrieval.
Recently the neural network based methods [56, 57, 65, 67],

which encode source code into semantic vectors, have shown their
superiority in capturing code semantics. But they need trainingwith
additional computation burden. In contrast, we reuse the trained
encoder mentioned in Section 2.2. As described above, the Bi-LSTM
based encoder is capable of capturing the sequential information of
source code and embedding the semantics into hidden state vectors.

Given a code snippet c , we encode it by the Bi-LSTM encoder
and get a sequence of hidden state vectors [h1, . . . ,hn] ∈ Rn×2k ,
where k is the vector dimension and n is the length of code snippet
c . Similar to [16], we apply a global max pooling operation over the
vector sequence to obtain the semantic representation rc ∈ R1×2k

as follows:

rc = [max(hi
1), · · · ,max(hi

2k)], i = 1, · · · ,n. (9)

For a testing code snippet ctest and any code snippet ci from the
training set, we compute their cosine similarity:

cosine(−−−→rtest ,
−→ri) =

−−−→rtest ·
−→ri

∥
−−−→rtest ∥∥

−→ri ∥
∈ [−1, 1], i ∈ [1,N]. (10)

where N is the size of the training set. At last, the code snippet with
the highest score is selected as the most similar one in the training
set.

Based on both source code retrieval components, since the train-
ing set is usually large, we can offline prepare a code retrieval base
which stores the pairs of code and AST-based token sequence and
the pairs of code and semantic vector before testing, as depicted
in Figure 2. Given one new code snippet for testing online, we re-
trieve the syntactic-level similar code snippet based on the efficient
Lucene search engine, and search for the semantic-level similar one
by computing the simple cosine similarity of vectors that is quite
fast.

It is not trivial to choose the most similar code snippet (i.e. top-1)
at the syntactic or semantic level. On the one hand, more top-
k (k > 1) similar candidates may be noisy especially when their
similarities are not high. On the other hand, if a similarity threshold
T is set to filter code snippets with relatively low similarities, it
may eliminate the useful low-frequency words as well. Because it
is hard to find such a static threshold to distinguish whether one
code snippet includes useful low-frequency words or not. We find
that selecting the most similar code snippet without the threshold
(i.e. k = 1 and T = 0) has a good trade-off between the inclusion of
useful low-frequency words and the noisy information, which will
be discussed in Section 3.

2.4 Retrieval-based Neural Summary
Generation

After training our attentional encoder-decoder model and retriev-
ing the two most similar code snippets from the training set, we will
predict and generate summary sentences online for the code snip-
pets from the testing set. Intuitively, we augment the attentional
encoder-decoder model (for high-frequency words) with the re-
trieved similar code snippets (for low-frequency words). One naive
solution is to enhance the probabilities of all the words in the simi-
lar code snippets by the similarity degrees, but it may include noisy
words such as “remove” in the example (Figure 1). Zhang et al. [64]
tried to filter these noisy words with the translation pieces based on
the source and target word alignment. However, unlike the neural
machine translation, the code snippets and their summaries usu-
ally miss the property of word alignment, which will be discussed
in Section 3. In contrast, besides the similarities of code snippets,
we also consider the conditional probability of each word during
decoding to help eliminate the possible noisy words that usually
have low conditional probabilities. As Figure 3 shows, we take the

Retrieval-based Neural Source Code Summarization ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

… </s>

def create_app … return False

def create_vdir … return False

def … return

Test code

Syntactically
similar code

Semantically
similar code

<s>

…

create ···

Attention

Attention

Attention

False remove_app

Encoder

…

…

λ* Simsyn*Psyn + λ* Simsem*Psem + Ptest

create

Final distribution

Decoder

Figure 3: Retrieval-based Neural Summary Generation. ⟨s⟩ and ⟨/s⟩ represent the begin and end symbols, respectively

example in Figure 1 as illustration. Based on the encoder and de-
coder of our trained model in Section 2.2, our retrieval-based neural
summary generator encodes each testing code snippet and its two
most similar ones simultaneously, gets their context vectors with
attentional mechanism and decodes them to predict the summary
words by fusing the conditional probabilities and similarities.

Specifically, for one testing code snippet ctest , we search and
retrieve its two most syntactically and semantically similar code
snippets csyn and csem from the training set mentioned in Section
2.3. Then we encode these three code snippets by our trained atten-
tional encoder-decoder model (Section 2.2) in parallel. Based on the
obtained three sequences of hidden states Htest , Hsyn and Hsem
for ct , csyn and csem , at each time step t during decoding, we can
compute the attention weights to produce context vectors accord-
ing to Equation 3, and then calculate the conditional probabilities to
predict the next word by Equation 7. For simplification, we denote
these conditional probabilities by Ptest (yt |y<t), Psyn (yt |y<t) and
Psem (yt |y<t), respectively.

In order to enhance the prediction performance of the original
attentional encoder-decoder model, we leverage the retrieved code
snippets and fuse all these three conditional probabilities. A straight-
forward way is to simply add them together. However, when the
similarity between ctest and csyn (or csem) is too low (even csyn
is the retrieved most similar one in the training set), Psyn (yt |y<t)
may have a negative impact on predicting correct summary words.
Thus we should consider the values of similarities for the fusion as
well. Directly reusing the similarities in the code retrieval (such as
results in Equation 10) is not reasonable, because we calculate these
similarities with different methods and from different aspects: one
at the syntactic level and the other at the semantic level. To solve
this problem, we normalize the similarities to make them compara-
ble based on the text edit distances d(ctest , csyn) and d(ctest , csem)

using dynamic programming [8], which is also adopted in [64]:

Sim(ctest , cr et) = 1 −
d(ctest , cr et)

max(|ctest |, |cr et |)
. (11)

where cr et denotes any retrieved code snippet. With these normal-
ized similarities, we combine the conditional probabilities to get
the final conditional distributions as follows:

Pf inal (yt |y<t) =Ptest (yt |y<t)+

λ · Sim(ctest , csyn)Psyn (yt |y<t)+

λ · Sim(ctest , csem)Psem (yt |y<t))).

(12)

where λ is a hyper-parameter that can be manually tuned.
Based on the final conditional distributions above, we can predict

the next word one-by-one and finally generate the whole summary
sentence, which incorporates the knowledge from the retrieved
code snippets.

3 EXPERIMENTS
In this section, we conduct experiments to evaluate the effectiveness
of our proposed approach and compare it with several state-of-the-
art methods from Software Engineering (SE) and Natural Language
Processing (NLP) communities.

3.1 Experimental Setup
We conduct experiments on two public large-scale datasets in
Python and Java, respectively. For simplification, we call them
PCSD (Python Code Summarization Dataset) and JCSD (Java Code
Summarization Dataset). PCSD is provided by Barone et al. [6],
which contains Python functions and their comments from open
source repositories in GitHub2. It uses docstrings (document strings)
as natural language descriptions, which we call comments. This
dataset includes 108,726 code-comment pairs and has been used
for training and evaluation in [55]. JCSD is a dataset consisting
2https://github.com

https://github.com

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu

of Java methods and comments collected by Hu et al. [23] from
popular repositories in GitHub. The comment of JCSD is the first
sentence extracted from its Javadoc, which is similar to the practice
in [17]. The original dataset includes two parts for API sequence
summarization and code summarization, and we choose the latter
part with 69,708 code and comment pairs as our JCSD dataset. For
fair comparison, we split PCSD into the training set, validation set
and testing set with fractions of 60%, 20% and 20%, respectively,
and split JCSD in proportion of 8 : 1 : 1 to keep the same split
settings as baselines [23, 55]. To make the training and testing sets
disjoint, we remove the duplicated samples from the testing set. In
common with [23, 55], we set the length limits (in terms of #words)
of code snippets and summaries (i,e., 100 and 50 for PCSD, 300 and
30 for JCSD), since such settings can cover most of their original
lengths. The statistics of these two datasets are described in Table 1,
where MaxL, AvgL and UniT are the maximum length, the average
length, and the total number of unique tokens, respectively. We
also consider the low-frequency words in the summaries whose
frequencies are no more than 10 and 100. NumW is the number
of low-frequency words and NumS is the number of summaries
which contain at least one low-frequency word. The percentages
of low-frequency words in all unique words of summaries, and the
percentages of summaries containing at least one low-frequency
word are also shown in the parentheses.

For tokenizing source code, we use the libraries tokenize3 and
javalang4 to get tokens of Python and Java code snippets, respec-
tively. Like [1], we further split code tokens into subtokens by snake
case or camel case to reduce data sparsity. Meanwhile, we use the
ast5 library and javalang to obtain their corresponding ASTs. To
tokenize summaries, we utilize the tokenizemodule of NLTK toolkit
[39]. Besides, we limit the maximum vocabulary size of source code
and summary to 50k since too large vocabulary may lead to worse
performance. The out-of-vocabulary words are replaced by UNK.
For better comparison, we also apply such tokenization to other
approaches to avoid the potential influence.

We implement our approach based on the open-source system
OpenNMT6 [30]. During training, we set the embedding size to
256 and the dimensions of hidden states in LSTM to 512. The batch
size is set to 32 and the maximum iterations is 100k. We adopt
the widely-used Adam [29] as the optimizer with learning rate
0.001 for training our model. The beam size is set to 5, and the
hyper-parameter λ is set to 3. All the above hyper-parameters are
determined based on the validation set by selecting the best ones
among some alternatives. All the experiments are conducted on
one Ubuntu 16.04 server with 16 cores of 2.4GHz CPU, 128GB RAM
and a Titan Xp GPU with 12GB memory.

3.2 Evaluation Metrics
Similar to existing work [21, 23, 24, 55], we evaluate the perfor-
mance of different approaches using common metrics including
BLEU [45], METEOR [5], ROUGE-L [36] and CIDER [54]. These
metrics are also popular in machine translation, text summarization,
and image captioning.
3https://docs.python.org/2/library/tokenize.html
4https://pypi.org/project/javalang
5https://docs.python.org/2/library/ast.html
6https://github.com/OpenNMT/OpenNMT-py

Given the generated summary X and the ground-truth Y , BLEU
measures the n-gram precision between X and Y by computing the
overlap ratios of n-grams and applying brevity penalty on short
translation hypotheses. BLEU-1/2/3/4 correspond to the scores of
unigram, 2-grams, 3-grams and 4-grams, respectively. The formula
to compute BLEU-N (N = 1, 2, 3, 4) is:

BLEU -N = BP · exp
N∑
n=1

ωn logpn,

where pn is the precision score of the n-gram matches between
candidate and reference sentences. BP is the brevity penalty and
ωn is the uniform weight 1/N .

For a pair of sentences to be compared, METEOR creates a word
alignment between them and calculates the similarity scores by

METEOR = (1 − γ · f raдβ) ·
P · R

α · P + (1 − α) · R
,

where P and R are the unigram precision and recall, f raд is the
fragmentation fraction. α , β and γ are three penalty parameters
whose default values are 0.9, 3.0 and 0.5, respectively.

ROUGE-L is widely used in text summarization [43, 50] and
provides F-score based on Longest Common Subsequence (LCS).
Suppose the lengths of X and Y arem and n, then:

Plcs =
LCS(X ,Y)

m
,Rlcs =

LCS(X ,Y)

n
, Flcs =

(1 + β2)PlcsRlcs
Rlcs + β

2Plcs
,

where β = Plcs/Rlcs and Flcs is the value of ROUGE-L.
CIDER is usually used for measuring the quality of image cap-

tions, which considers the frequency of n-grams in the reference
sentences by computing the TF-IDF weighting for each n-gram.
CIDERn score for n-gram is computed using the average cosine
similarity between the candidate sentence and the reference sen-
tences. The final result is calculated by combining the scores for
different n-grams (up to 4).

Note that the scores of BLEU, METEOR and ROUGE-L are in the
range of [0,1] and usually reported in percentages. But CIDER is
not between 0 and 1, and thus it is reported in real values.

3.3 Baselines
We compare our approach with existing work on source code sum-
marization. They can be divided into two groups: Retrieval-based
and NMT-based approaches. In addition, we also compare with a
state-of-the-art algorithm that combines the above two kinds of
approaches although it is originally proposed for natural language
translation. We use the default settings of these approaches unless
otherwise stated.

3.3.1 Retrieval-based approaches.

• LSI is a text retrieval technique for analyzing the latentmean-
ing or concepts of documents. It is used in [18] to choose
the most important terms of code snippets as term-based
summaries. In order to generate human-readable summary
sentences, for any testing code snippet, we use LSI to re-
trieve the most similar one from the training set and take its
summary as the result. The similarity is computed based on
the LSI-reduced vectors and cosine distance, and we set the
vector dimension to be 500.

https://docs.python.org/2/library/tokenize.html
https://pypi.org/project/javalang
https://docs.python.org/2/library/ast.html
https://github.com/OpenNMT/OpenNMT-py

Retrieval-based Neural Source Code Summarization ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: The statistics of two datasets

Dataset Source Code Length (#words) Summary Length (#words) Word Frequency ≤10 Word Frequency ≤100
MaxL AvgL UniT MaxL AvgL UniT NumW NumS NumW NumS

PSCD 157,116 133.1 481,756 333 9.9 37,111 32,093(86.5%) 46,481(42.8%) 36,003(97.0%) 87,626(80.6%)
JSCD 4842 99.9 230,336 670 17.1 35,535 30,342(85.4%) 34,207(41.4%) 34,223(96.3%) 63,954(77.3%)

Table 2: Method comparison for source code summarization

Methods PCSD JCSD

BLEU-1/2/3/4(%) METEOR(%) ROUGE-L(%) CIDER BLEU-1/2/3/4(%) METEOR(%) ROUGE-L(%) CIDER
LSI 36.3 23.6 20.1 17.6 17.2 40.0 1.982 31.4 22.5 19.3 17.3 14.4 34.8 1.803
VSM 38.9 26.1 22.1 19.3 19.0 42.7 2.216 33.3 24.4 21.1 19.0 15.4 36.6 1.983
NNGen 36.5 23.8 20.1 17.4 17.1 40.2 1.967 33.0 24.4 20.9 18.7 15.0 36.3 1.933
CODE-NN 30.8 15.4 10.7 8.1 13.4 35.1 1.229 23.9 12.8 8.6 6.3 9.1 28.9 0.978
TL-CodeSum 31.1 16.5 12.5 10.4 13.6 35.3 1.335 29.9 21.3 18.1 16.1 13.7 33.2 1.66
Hybrid-DRL 41.1 26.2 19.5 15.0 17.9 42.2 2.042 32.4 22.6 16.3 13.3 13.5 36.5 1.656
GRNMT 38.6 24.0 18.8 15.8 18.5 43.4 1.978 32.6 22.6 17.9 15.5 15.0 37.6 1.732
Rencos 43.1 29.5 24.2 20.7 21.1 47.5 2.449 37.5 27.9 23.4 20.6 17.3 42.0 2.209

• VSM is the abbreviated form of Vector Space Model [48]. A
classic example of VSM is Term Frequency-Inverse Docu-
ment Frequency (TF-IDF), which is adopted by some auto-
matic source code summarization work [19, 46]. Different
from LSI, it indexes code snippets into weight vectors based
on term frequency and document frequency. Once obtaining
the vector representations, we retrieve the summary of the
most similar code snippet by the cosine distance.

• NNGen is a simple but effective Nearest Neighbor based
algorithm that is proposed to produce commit messages for
code changes [37]. After building the vectors of code changes
based on bag of words and the term frequency, it retrieves the
nearest neighbors of code changes by the cosine similarity of
vectors and the BLEU-4 score. Then NNGen directly reuses
the commit message of the nearest neighbor. We reproduce
such an algorithm in our task by replacing code changes
with code snippets.

3.3.2 NMT-based approaches.

• CODE-NN7 is the first neural approach that learns to gen-
erate summaries of source code [24]. It is an LSTM encoder-
decoder neural network that encodes code snippets to con-
text vectors with attention mechanism and produces sum-
maries.

• TL-CodeSum8 is a multi-encoder neural model that en-
codes API sequences along with code token sequences and
generates summaries from source code with transferred API
knowledge [23]. It first trains an API sequence encoder us-
ing an external dataset. The learned API representations are
then applied to source code summarization task to assist the
summary generation.

• Hybrid-DRL9 is an advanced neural approach with hybrid
code representations and deep reinforcement learning [55].
The basic architecture is also a multi-encoder NMT to learn
structural and sequential information by encoding ASTs

7https://github.com/sriniiyer/codenn
8https://github.com/xing-hu/TL-CodeSum
9https://github.com/wanyao1992/code_summarization_public

and tokens of source code. Similar work on incorporating
ASTs is also done by [21, 34], but Hybrid-DRL further uses
reinforcement learning to solve the exposure bias problem
during decoding and obtains better performance.

Furthermore, as we mentioned, we also include an approach that
guides NMT with retrieved translation pieces in natural language
translation [64] (referred to as GRNMT). The translation pieces
are n-grams of the retrieved target sentences that also match the
common words in both the input and the retrieved source sentences
by word alignment. During decoding, GRNMT uses the translation
pieces to enhance the word prediction accuracy.

3.4 Results and Discussion
We present the experimental results and analysis through the fol-
lowing research questions.

RQ1:Howdoes our proposed approachperformcompared
to the baselines? Table 2 shows the performances of different
methods to generate code summaries in terms of our evaluation
metrics. We compute the values of these metrics using the same
scripts provided by Hybrid-DRL [55]. For these metrics, the bigger
is better, and the best one of each metric is marked in bold.

From the table, we can see that retrieval-based methods LSI,
VSM and NNGen yield good results. In particular, VSM achieves
the best performance among these three techniques. It is a little
confusing that LSI seems to be poorer than VSM, since LSI considers
the term association and is usually better than VSM (TF-IDF) in
capturing semantics of plain texts[66]. But as mentioned in [66], if
the dimension of TF-IDF (i.e., the vocabulary size) is much larger
than that of LSI (i.e., 500), it may produce better performance. In
our case, the source code corpus has a huge vocabulary size of
more than 50k in TF-IDF since the unique tokens of source code are
much more than those in plain texts due to the arbitrary identifiers.
Such a phenomenon is also observed in Haiduc et al.’s work [19].
Comparing VSM with NNGen, VSM is better since it considers the
document frequency but NNGen does not.

Among all threeNMT-basedmethods of CODE-NN, TL-CodeSum
and Hybrid-DRL, CODE-NN performs worse than the other two

https://github.com/sriniiyer/codenn
https://github.com/xing-hu/TL-CodeSum
https://github.com/wanyao1992/code_summarization_public

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu

neural models because it only depends on the embeddings of to-
kens (i.e., at the lexical level) to understand the semantics of code
snippets. In contrast, TL-CodeSum is better since it captures more
semantics of source code with learned API sequence knowledge.
We also use the external dataset from the original JCSD provided in
[23] to pre-train the API sequence encoder for JCSD, but PCSD does
not have such external dataset. Thus TL-CodeSum is more effective
on JCSD than on PCSD. For Hybrid-DRL, it has better performance
than TL-CodeSum on PCSD since the AST-based structural informa-
tion of source code is incorporated and the exposure bias problem
is solved. But on JCSD, for the metrics including BLEU-3, BLEU-
4, METEOR and CIDER, Hybrid-DRL is worse than TL-CodeSum
probably because the API sequence knowledge from the external
dataset of the original JCSD dominates the performance. In addition,
we find that CODE-NN and TL-CodeSum have an overall worse
performance than the retrieval-based ones, which is not surprising
due to the low-frequency word problem as described in Section 1.

As a combination of retrieval-based and NMT-based methods,
GRNMT guides one simple encoder-decoder model with the re-
trieved translation pieces. It can outperform CODE-NN in all met-
rics, TL-CodeSum and Hybrid-DRL in some metrics such as ME-
TEOR and ROUGE-L, which means that the retrieval information
actually helps. In addition, GRNMT is better than all retrieval-based
methods for ROUGE-L, which indicates that the encoder-decoder
neural model can also contribute to the performance.

Finally, from the table, we can see that our approach achieves the
best performance for all evaluation metrics. The reason is that we
retrieve the most similar code snippets at both syntactic level and
semantic levels as additional contexts to our attentional encoder-
decoder model. We also enhance the summary generation by the
fusion of the similarities and the conditional probabilities for the
next word prediction, as described in Section 2. Compared with
our approach, unlike it in the task of natural language translation,
GRNMT is worse since it is difficult to precisely match the n-grams
of summaries with the corresponding elements in code snippets
and get high-quality translation pieces.

Due to the large scale training set and the online code retrieval
during testing, our approach may cost much more time to generate
summaries than a single NMTmodel. However, we only need 89 ms
in average to generate the summary for each testing code snippet
in the two datasets of our experiment because of the efficient search
engine Lucene and the fast computation of the cosine similarity.

RQ2: How effective are the main components of our ap-
proach? In our approach, we design two code retrieval components
from different aspects including the syntactic level and semantic
level, we want to know whether they are effective. In this experi-
ment, at first we do not use our attentional encoder-decoder model,
but each time adopt only one of these two retrieval components
(Only Syntactic Retrieval and Only Semantic Retrieval) and directly
take the summary of the most similar code snippet from the train-
ing set as the final generated one. Then we use the attentional
encoder-decoder model (NMT) and consider the impact of adding
the retrieved code snippets in four different scenarios: without any
retrieval code (NMT); adding themost similar code snippet retrieved
at the syntactic level (NMT+Syntactic Retrieval); adding the most
similar code snippet retrieved at the semantic level (NMT+Semantic

Retrieval); adding both the two most similar code snippets above
(NMT+Both Retrieval, which is also our final approach).

We present the experimental results in Table 3. Both of our
syntactic-level and semantic-level retrieval components are more ef-
fective than existing retrieval-based methods LSI, VSM and NNGen,
which are described in Table 2. This is because we capture more
syntactic or semantic information mentioned in Subsection 2.3. In
addition, our syntactic-level and semantic-level retrieval compo-
nents have slightly different but comparable results, which indicates
that the syntactic and semantic information from two different as-
pects of source code are both useful in code retrieval. Based on the
two retrieved code snippets, we add any one or both to our original
attentional encoder-decoder model. Compared with the case with-
out any retrieval code, we can see that the retrieved information
can indeed enhance the performance of the neural model, even
when we add just one most similar code snippet retrieved at either
the syntactic or semantic level. When these two most similar code
snippets are both utilized, we can obtain the best performance.

RQ3: Does our approach perform better than NMT-based
methods for tackling the low-frequency word problem? As
mentioned in Section 1 and 2, our retrieval-based neural model can
tackle the low-frequency word problem better than NMT-based
methods, which may correctly generate more low-frequency words.
To illustrate it, we perform a statistical analysis about the low-
frequency words in generated summaries. For the testing set, our
generated summaries include 10,350 and 5,729 unique words for
PCSD and JCSD, respectively, and each summary has 8.4 (PCSD)
and 12.0 (JCSD) words in average. We first collect all the correctly
generated words according to the ground-truth summaries. Then
we count the frequencies of all these correct words in the training
set, and record the number of the correct and low-frequency words
(frequency = 1, 2, 5, 10, 20, 50, and 100). In this experiment, we com-
pare Rencos with our original attentional encoder-decoder model
(NMT) and show how they deal with the low-frequency words. The
experiment results are shown in Table 4, where Ratio is the quotient
of Rencos/NMT , which indicates the degree of improvement our
approach achieves on the low-frequency words.

From the table, we can see that our approach can correctly predict
more low-frequency words than NMT when the word frequency is
small (≤ 100). For example, for the words that occur only once in
the training set, the number correctly predicted by our approach
is 1.77 and 1.93 times that of NMT on the datasets of PCSD and
JCSD, respectively. Obviously these additional low-frequencywords
come from the summaries of our retrieved code snippets, which
validates our claim that our retrieval-based neural source code
summarization can more effectively deal with the low-frequency
word problem than the NMT-based methods. Moreover, when the
word frequency increases, we can see that NMT has a trend to
perform better as the ratio decreases. This indicates that for high-
frequency words NMT can easily capture them and the benefit
brought by the retrieved source code becomes small.

RQ4: Will our approach perform better if we retrieve top-
k (k>1) similar code snippets and filter them according to a
similarity threshold T ? In our approach, our two syntactic-level
and semantic-level retrieval components both select the most simi-
lar code snippet (k = 1) without threshold (T = 0) by default. In this
RQ, we study whether the most k(k > 1) similar code snippets and

Retrieval-based Neural Source Code Summarization ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Effectiveness of each component of the proposed approach

Descriptions PCSD JCSD

BLEU-1/2/3/4(%) METEOR(%) ROUGE-L(%) CIDER BLEU-1/2/3/4(%) METEOR(%) ROUGE-L(%) CIDER
Only Syntactic Retrieval 39.8 27.4 23.3 20.2 19.5 43.5 2.296 33.9 25.2 21.7 19.5 15.9 37.4 2.020
Only Semantic Retrieval 39.5 27.1 23.1 20.1 19.1 43.1 2.270 33.7 25.3 22.1 19.9 15.4 37.0 2.049
NMT 37.5 22.5 17.1 14.2 17.3 42.3 1.871 31.1 20.7 16.0 13.8 13.8 36.3 1.633
NMT+Syntactic Retrieval 41.9 28.2 22.8 19.5 20.4 46.5 2.344 36.3 26.7 22.1 19.5 16.7 40.9 2.106
NMT+Semantic Retrieval 42.2 28.4 23.2 19.8 20.6 46.6 2.362 36.8 27.2 22.6 19.9 17.0 41.3 2.164
NMT+Both Retrieval 43.1 29.5 24.2 20.7 21.1 47.5 2.449 37.5 27.9 23.4 20.6 17.3 42.0 2.209

Table 4: Number of correctly generated low-frequency
words

Word Frequency 1 2 5 10 20 50 100
PCSD NMT 452 376 272 176 145 84 82

Rencos 799 515 344 223 184 88 109
Ratio 1.77 1.37 1.26 1.27 1.27 1.05 1.33

JCSD NMT 126 75 45 27 38 28 16
Rencos 243 138 73 38 49 37 18
Ratio 1.93 1.84 1.62 1.41 1.29 1.32 1.11

1 2 3 4 5 6 7 8 9 10
k

24

25

26

27

28

BL
EU

T=0
T=0.2
T=0.5
T=0.8

1 2 3 4 5 6 7 8 9 10
k

18

19

20

M
ET

EO
R

T=0
T=0.2
T=0.5
T=0.8

1 2 3 4 5 6 7 8 9 10
k

44

45

46

RO
UG

E-
L

T=0
T=0.2
T=0.5
T=0.8

1 2 3 4 5 6 7 8 9 10
k

2.0

2.1

2.2

2.3

CI
DE

R

T=0
T=0.2
T=0.5
T=0.8

Figure 4: Performance of top-k retrieved similar code snip-
pets with different thresholds T

similarity threshold T (T > 0) can provide more useful knowledge
for generating a good summary. Thus we use the semantic-level re-
trieval component and conduct experiments on PCSD by obtaining
k = 1, 2, ..., 10 code snippets with the k highest similarities by Equa-
tion 10. We also consider to filter them by the similarity threshold
T = 0.2, 0.5, 0.8. For simplification, we calculate the average value
of BLEU-1/2/3/4 and mark it as BLEU.

The experimental results are shown in Figure 4. We can see that
when k increases, the performance becomes worse with any thresh-
old. For example, the BLEU score decreases nearly 4% when we set
k = 10 and T = 0. We further calculate the distribution of simi-
larities in Equation 11 between top-k(k = 1, 2, ..., 10) similar code
snippets and the corresponding input. As shown in Figure 5, we
find that the overall similarity decreases greatly when k increases.
This means that when k is bigger, the k-th similar code snippet
may be completely irrelevant to the testing one and provide more

1 2 3 4 5 6 7 8 9 10
k

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Figure 5: Similarity distributions of code snippets

noisy words. The threshold T can effectively filter these irrelevant
code snippets, but may eliminate potential useful low-frequency
words as well and make the performance worse, for example, when
T = 0.8. When k is small (e.g. k=1), such elimination dominates the
performance since the retrieved similar code snippets are almost
all useful but filtered by the threshold. Also, combining more code
snippets during testing is much time-consuming. Therefore, we
choose the most similar code snippet (k = 1) without threshold
(T = 0) in this work for the best performance and high efficiency.
In addition, when the similarities of retrieved code snippets are low
(even for the most similar one), our approach can automatically tol-
erate them because we take the similarity as one factor in Equation
12 , which tends to ignore the words produced by low-similarity
code snippets.

3.5 Examples
For qualitative analysis of our approach, we present two examples
of summaries generated by different methods from the testing sets
of Python and Java datasets, respectively. A simple Python example
is shown in Figure 1. Our approach generates the summary “create
an iis application”, which is exactly the same as the ground-truth,
indicating that our approach can effectively combine the high-
frequency word “create” from NMT and the low-frequency word
“iis” form retrieval-based methods. The other more difficult Java
example is depicted in Table 5, where the reference is the ground-
truth summary written by developers, and others are automatically
generated summaries by different methods. We can see that the
high-frequency word “remove” is captured by all the NMT-based
methods, GRNMT and our approach, while all the retrieval-based

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu

Table 5: A Java code snippet with generated summaries

pu b l i c vo id removeColumn (f i n a l String columnName) {
i f (columnName == nu l l) { r e t u r n ; }
List<String > cols = Arrays . asList (getInfo () . headers) ;
f i n a l i n t colIndex = cols . indexOf (columnName) ;
removeColumn (colIndex) ;

}

Reference: remove the column represented by its name
LSI : get index of this column name
VSM: adds the given column to this table
NNGen: get index of this column name
CODE-NN : remove a column from the table .
TL-CodeSum: remove column at specified index .
Hybrid-DRL: removes a column from the column .
GRNMT : remove a column from the table .
Our approach: remove the column represented by the index

methods miss it. In addition, the phrase “represented by” is correctly
predicted only by our approach since it appears in the summaries
of our two retrieved code snippets and is effectively captured by the
retrieval-based summary generation. Hence our approach generates
the closest summary to the reference.

3.6 Human Evaluation
The above four metrics BLEU, ROUGE-L, METEOR, and CIDER
can be used to compare summaries generated by different methods.
However, they mainly calculate the textual similarity between the
reference and the generated summaries, rather than the semantic
similarity. Therefore we perform human evaluation to complement
the quantitative evaluation in terms of those metrics.

For human evaluation of our approach, we recruit workers from
Amazon Mechanical Turk (AMT) 10, a worldwide crowdsourcing
website. AMT supports micro-tasks (also known as Human Intelli-
gence Tasks, HITs) posted by clients. Remote workers can complete
HITs for money. We randomly choose 100 code snippets from the
testing sets (50 from PCSD and 50 from JCSD) and their comments
produced by three methods VSM, Hybrid-DRL, and Rencos. As
depicted in Table 2, VSM is the best among the retrieval-based ap-
proaches. Hybrid-DRL is the best on PCSD among the NMT-based
approaches, and is comparable with TL-CodeSum on JCSD. For each
of these three methods, we obtain the natural language comment
pairs consisting of the reference comments written by developers
and the generated ones, and then post them as HITs to AMT. Each
HIT is assigned to three different workers, and such redundancy
can help obtain more consistent results. Finally, we have 900 HITs
(3 methods of VSM, Hybird-DRL and Rencos, 100 code snippets and
3 redundant assignments). These HITs are completed by 129 unique
workers. Each HIT costs 0.03US$ and all HITs spend 122 minutes
in total.

In each HIT webpage, we ask “How similar is the meaning of
these two source code comments? Comment1: X; Comment2: Y”
where X and Y are one comment pair, and workers can select a
score between 1 to 5 where 1 means “Not Similar At All” and 5

10https://www.mturk.com/

Table 6: The distribution of the scores of the generated com-
ments

Score 1 2 3 4 5 Avg ≥4 ≥3 ≤2
VSM 24 18 31 17 10 2.71 27 58 42
Hybrid-DRL 0 26 48 23 3 3.03 26 74 26
Rencos 2 13 39 30 16 3.45 46 85 15

means “Highly Similar/Identical”. We get three scores from work-
ers for every HIT and choose the median value as the final score.
Table 6 shows the score distribution of the reference and generated
comments. We can see that our approach achieves the best scores
and improves the average (Avg) score from 2.71 (VSM) and 3.03
(Hybrid-DRL) to 3.45. Specifically, among the randomly selected
100 code snippets, our approach can generate 16 highly similar or
even identical comments with the reference ones (score = 5), 46
good comments (score ≥ 4) and 85 comments that are not bad (score
≥ 3). Our approach also receives the smallest number of negative
results (score ≤ 2).

Based on the 100 final scores for each approach of Rencos, Hybrid-
DRL and VSM, we conduct Wilcoxon signed-rank tests [58] and
compute Cliff’s delta effect sizes [41]. Comparing Rencos with
Hybrid-DRL and VSM, the p-values of Wilcoxon signed-rank tests
at 95% confidence level are 0.00025 and 2.111e-06, which means
the improvements achieved by our approach are statistically sig-
nificant. In addition, Cliff’s delta effect sizes are 0.252 (small but
non-negligible) and 0.3321 (medium), respectively. In summary,
the results of human evaluation confirm the effectiveness of the
proposed approach.

4 THREATS TO VALIDITY
There are three main threats to the validity of our evaluation.

• In the implementation of existing methods, we directly use
the public code of CODE-NN, TL-CodeSum, and Hybrid-
DRL provided by their authors, but the code of GRNMT
is not available. We have tried our best to read the paper
carefully and consult the authors about many details. We will
eliminate this threat as soon as the tool is publicly available.

• The scale of datasets. As we analyzed in Section 1, larger
datasets cannot help mitigate the low-frequency words prob-
lem but may result in more infrequent words. In our evalua-
tion, we have used two public large datasets, which include
108,726 Python and 69,708 Java code snippets and their sum-
maries. In our future work, we will experiment with even
larger-scale datasets and further evaluate the effectiveness
of Rencos in handling low-frequency words.

• The retrieved code snippets may not always have high simi-
larities, especially when the code base is small. We suggest
to increase the scale and diversity of code bases to avoid
such threat. However, we should note that Rencos only takes
the similarity as one factor in Equation 12. If the similarity
is low, Rencos tends to choose the words predicted by the
NMT model. In this way, Rencos can still guarantee that its
performance is comparable with that of NMT.

https://www.mturk.com/

Retrieval-based Neural Source Code Summarization ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

5 RELATEDWORK
5.1 Source Code Summarization
In software engineering community, Information Retrieval tech-
niques are widely used for automatic source code summarization.
Some studies extract terms from source code for generating term-
based summaries [13, 18, 19, 46]. Haiduc et al. [18, 19] use IR meth-
ods including LSI and VSM to choose top-k terms from a code
snippet. They treat each function of source code as a document
and index on such a corpus by LSI and VSM, then the most similar
terms based on their cosine distances between documents are se-
lected as the summary. Their work is improved by topic modeling
in [13]. Rodeghero et al. [46] improve the process of selecting terms
by eye-tracking and modify the weights of VSM for better code
summarization. Besides the term-based summaries, code clone de-
tection techniques are used to retrieve similar code snippets from
open-source GitHub projects and Stack Overflow, and reuse their
sentence comments as code summaries [60, 61]. In addition, Srid-
hara et al. [52] design heuristics to choose statements from Java
methods, and use the Software Word Usage Model (SWUM) to iden-
tify keywords from those statements and create summaries though
manually-crafted templates.

Recently many neural models are proposed to generate source
code summaries. Allamanis et al. [1] suggest method and class
names as code summaries by the neural logbilinear context model,
which is based on embeddings of code tokens. The convolutional
attention model is presented to predict extreme summarization of
source code such as function names [2]. The NMT-based models
are also widely used to generate summaries for code snippets with
encoder-decoder neural networks [21–24, 34, 55]. Iyer et al. [24]
propose an attentional LSTM encoder-decoder network for auto-
matically generating short natural language summaries of source
code snippets. Hu et al. [23] use one additional encoder to leverage
API sequences and improve the summary generation by learned
API sequence knowledge. The abstract syntax tree structures are
incorporated by [21, 34, 55]. Moreover, its performance can be fur-
ther improved by deep reinforcement learning [38, 55] to solve the
exposure bias problem during decoding.

Compared with the above work, our approach can take the ad-
vantages of both Information Retrieval and NMT-based methods
by enhancing the NMT model with the retrieved similar code snip-
pets from the training set, resulting in better performance than the
above state-of-the-art work.

5.2 Code Clone Detection and Code Retrieval
Many studies [27, 28, 35] show that much duplicated code exists
in a large code base. There are a lot of work investigating code
clone and similar code retrieval techniques. Traditional code clone
detection techniques such as DECKARD [25] and SourcererCC [47]
detect similar code with the tree-based or token-based code com-
parison. Recently neural models are incorporated to learn vector
representations of source code and use these vectors to compute
code similarity [56, 57, 65, 67], which can achieve better perfor-
mance but need additional time-consuming training and labeled
data. In this work, during the online testing, we need lightweight
and efficient search of similar code from a large-scale training set,

thus we prefer to reuse our trained encoder to learn semantic vec-
tors rather than training new neural models. Also, we want to find
more similar code snippets from the syntax aspect. To avoid com-
plex operations over ASTs [9], we convert ASTs to token sequences
and leverage the off-the-shelf efficient search engine Lucene for
code retrieval.

5.3 Retrieval-based Neural Machine
Translation

Due to the low-frequency word problem in neural machine trans-
lation , some studies that combine the retrieval information with
encoder-decoder neural models have been recently proposed in the
NLP community [10, 15, 62, 64]. Zhang et al. [64] extract the transla-
tion pieces, which are n-grams from retrieved target sentences and
their corresponding source words appearing in testing sentences.
Then these translation pieces are leveraged to guide the decoding.
In natural language translation, the source and target words of
retrieved translation pairs can be easily matched through word
alignment. However, in source code summarization, it is difficult to
find out which code elements produce certain specific words in the
short summaries. As a result, the similar idea is not effective in our
work. Gu et al. [15] incorporate the retrieval information with new
encoders and build one complex encoder-decoder neural network.
In order to improve NMT with additional retrieval information, a
Translation Memory (TM) which consists of source and target sen-
tence pairs is leveraged by graph representation and self-attention
mechanism over the graph [62], or augmenting the source data
with retrieved fuzzy TM targets by means of concatenation [10].
Compared with their work, we do not need additional encoders, and
directly combine the similarities and the conditional probabilities
of retrieved similar code snippets to predict the summary words
during decoding.

6 CONCLUSION
In this paper, we propose a novel retrieval-based neural approach
named Rencos that augments an attentional encoder-decoder model
with the retrieved two most similar code snippets for better source
code summarization. Given one new code snippet, instead of only
reusing the retrieved summaries or only generating summaries
based on NMT, Rencos can automatically generate summary by the
fusion of retrieved code snippets and itself. We also design two
code retrieval methods from the aspects of syntax and semantics to
accommodate more knowledge about the code. We have evaluated
the effectiveness of our approach through extensive experiments
and the results show that it outperforms the related approaches.

Our code, experimental data and results are publicly available at
https://github.com/zhangj111/ rencos.

ACKNOWLEDGMENTS
This work was supported partly by National Key Research and De-
velopment Program of China (No.2018YFB1004805), partly by Na-
tional Natural Science Foundation of China (No.61702024, 61932007,
61972013 and 61421003) and ARC DP200102940.

https://github.com/zhangj111/rencos

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-

gesting accurate method and class names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 38–49.

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
Conference on Machine Learning. 2091–2100.

[3] Philip Arthur, Graham Neubig, and Satoshi Nakamura. 2016. Incorporating
Discrete Translation Lexicons into Neural Machine Translation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Austin, Texas, 1557–1567.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[5] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65–72.

[6] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A Parallel Corpus of
Python Functions and Documentation Strings for Automated Code Documen-
tation and Code Generation. In Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), Vol. 2. 314–
319.

[7] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Proceedings. Interna-
tional Conference on Software Maintenance (Cat. No. 98CB36272). IEEE, 368–377.

[8] Richard Bellman. 1966. Dynamic programming. Science 153, 3731 (1966), 34–37.
[9] Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical

computer science 337, 1-3 (2005), 217–239.
[10] Bram Bulté and Arda Tezcan. 2019. Neural Fuzzy Repair: Integrating Fuzzy

Matches into Neural Machine Translation. In 57th Conference of the Association
for Computational Linguistics (ACL). 1800–1809.

[11] Thomas A Corbi. 1989. Program understanding: Challenge for the 1990s. IBM
Systems Journal 28, 2 (1989), 294–306.

[12] Sergio Cozzetti B de Souza, Nicolas Anquetil, and Káthia M de Oliveira. 2005. A
study of the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication: documenting
& designing for pervasive information. ACM, 68–75.

[13] Brian P Eddy, Jeffrey A Robinson, Nicholas A Kraft, and Jeffrey C Carver. 2013.
Evaluating source code summarization techniques: Replication and expansion.
In 2013 21st International Conference on Program Comprehension (ICPC). IEEE,
13–22.

[14] Beat Fluri, Michael Wursch, and Harald C Gall. 2007. Do code and comments
co-evolve? on the relation between source code and comment changes. In 14th
Working Conference on Reverse Engineering (WCRE 2007). IEEE, 70–79.

[15] Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor O. K. Li. 2018. Search Engine
Guided Neural Machine Translation. In AAAI.

[16] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
933–944.

[17] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ACM, 631–642.

[18] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program
comprehension with source code summarization. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 2. ACM, 223–
226.

[19] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
use of automated text summarization techniques for summarizing source code.
In 2010 17th Working Conference on Reverse Engineering. IEEE, 35–44.

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[21] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension.
ACM, 200–210.

[22] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2019. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering (2019), 1–39.

[23] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
source code with transferred API knowledge. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence. AAAI Press, 2269–2275.

[24] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vol. 1. 2073–2083.

[25] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
DECKARD: Scalable and accurate tree-based detection of code clones. In Proceed-
ings of the 29th international conference on Software Engineering. IEEE Computer
Society, 96–105.

[26] Mira Kajko-Mattsson. 2005. A survey of documentation practice within corrective
maintenance. Empirical Software Engineering 10, 1 (2005), 31–55.

[27] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Trans. Software Eng. 28 (2002), 654–670.

[28] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An Empiri-
cal Study of Code Clone Genealogies. In Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (Lisbon, Portugal) (ESEC/FSE-13).
ACM, New York, NY, USA, 187–196.

[29] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[30] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M.
Rush. 2017. OpenNMT: Open-Source Toolkit for Neural Machine Translation. In
Proc. ACL. https://doi.org/10.18653/v1/P17-4012

[31] Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004. Six learning barriers in
end-user programming systems. In 2004 IEEE Symposium on Visual Languages-
Human Centric Computing. IEEE, 199–206.

[32] Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. 2006. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on software engineering 12
(2006), 971–987.

[33] Thomas D LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental
models: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering. ACM, 492–501.

[34] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A Neural Model for
Generating Natural Language Summaries of Program Subroutines. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Quebec,
Canada) (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 795–806. https://doi.org/10.
1109/ICSE.2019.00087

[35] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. 2006. CP-Miner: finding copy-paste
and related bugs in large-scale software code. IEEE Transactions on Software
Engineering 32, 3 (March 2006), 176–192.

[36] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
Text Summarization Branches Out (2004).

[37] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation:
how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 373–384.

[38] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019.
Automatic Generation of Pull Request Descriptions. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 176–
188.

[39] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit.
In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics.

[40] Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. 1412–1421.

[41] Guillermo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. 2011.
Cliff’s Delta Calculator: A non-parametric effect size program for two groups of
observations. Universitas Psychologica 10, 2 (2011), 545–555.

[42] Paul W McBurney. 2016. Improving program comprehension via automatic docu-
mentation generation. University of Notre Dame.

[43] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing
Xiang. 2016. Abstractive Text Summarization using Sequence-to-sequence RNNs
and Beyond. In Proceedings of The 20th SIGNLL Conference on Computational
Natural Language Learning. 280–290.

[44] Sankar K Pal and Sushmita Mitra. 1992. Multilayer perceptron, fuzzy sets, and
classification. IEEE Transactions on neural networks 3, 5 (1992), 683–697.

[45] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[46] Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and Sidney
D’Mello. 2014. Improving automated source code summarization via an eye-
tracking study of programmers. In Proceedings of the 36th International Conference
on Software Engineering. ACM, 390–401.

[47] Hitesh Sajnani, Vaibhav Pratap Singh Saini, Jeffrey Svajlenko, Chanchal Kumar
Roy, and Cristina V. Lopes. 2016. SourcererCC: Scaling Code Clone Detection to
Big-Code. 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE) (2016), 1157–1168.

[48] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087

Retrieval-based Neural Source Code Summarization ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[49] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[50] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 1073–1083.

[51] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An examination of software engineering work practices. In CASCON First Decade
High Impact Papers. IBM Corp., 174–188.

[52] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. ACM, 43–52.

[53] Armstrong A Takang, Penny AGrubb, and Robert DMacredie. 1996. The effects of
comments and identifier names on program comprehensibility: an experimental
investigation. J. Prog. Lang. 4, 3 (1996), 143–167.

[54] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider:
Consensus-based image description evaluation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 4566–4575.

[55] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S Yu. 2018. Improving automatic source code summarization via deep rein-
forcement learning. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 397–407.

[56] Hui-Hui Wei and Ming Li. 2017. Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in source code.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence.
AAAI Press, 3034–3040.

[57] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87–98.

[58] Frank Wilcoxon, SK Katti, and Roberta A Wilcox. 1970. Critical values and
probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank

test. Selected tables in mathematical statistics 1 (1970), 171–259.
[59] Sam Wiseman and Alexander M Rush. 2016. Sequence-to-Sequence Learning as

Beam-Search Optimization. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. 1296–1306.

[60] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. Clocom: Mining existing source
code for automatic comment generation. In 2015 IEEE 22nd International Confer-
ence on Software Analysis, Evolution, and Reengineering (SANER). IEEE, 380–389.

[61] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Mining question
and answer sites for automatic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 562–
567.

[62] Mengzhou Xia, Guoping Huang, Lemao Liu, and Shuming Shi. 2019. Graph based
translation memory for neural machine translation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33. 7297–7304.

[63] Wojciech Zaremba and Ilya Sutskever. 2014. Learning to execute. arXiv preprint
arXiv:1410.4615 (2014).

[64] Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Graham Neubig, and Satoshi
Nakamura. 2018. Guiding Neural Machine Translation with Retrieved Translation
Pieces. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,
Louisiana, 1325–1335. https://doi.org/10.18653/v1/N18-1120

[65] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering.
IEEE Press, 783–794.

[66] Wen Zhang, Taketoshi Yoshida, and Xijin Tang. 2011. A comparative study
of TF*IDF, LSI and multi-words for text classification. Expert Systems with
Applications 38, 3 (2011), 2758–2765.

[67] Gang Zhao and Jeff Huang. 2018. DeepSim: Deep Learning Code Functional
Similarity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018). 141–151.

https://doi.org/10.18653/v1/N18-1120

