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ABSTRACT
Automatic software debugging mainly includes two tasks of fault lo-
calization and automated program repair. Compared with the tradi-
tional spectrum-based and mutation-based methods, deep learning-
based methods are proposed to achieve better performance for fault
localization. However, the existing methods ignore the deep seman-
tic features or only consider simple code representations. They do
not leverage the existing bug-related knowledge from large-scale
open-source projects either. In addition, existing template-based
program repair techniques can incorporate project specific informa-
tion better than deep-learning approaches. However, they are weak
in selecting the fix templates for efficient program repair. In this
work, we propose a novel approach called TRANSFER, which lever-
ages the deep semantic features and transferred knowledge from
open-source data to improve fault localization and program repair.
First, we build two large-scale open-source bug datasets and design
11 BiLSTM-based binary classifiers and a BiLSTM-based multi-
classifier to learn deep semantic features of statements for fault
localization and program repair, respectively. Second, we combine
semantic-based, spectrum-based and mutation-based features and
use an MLP-based model for fault localization. Third, the semantic-
based features are leveraged to rank the fix templates for program
repair. Our extensive experiments on widely-used benchmark De-
fects4J show that TRANSFER outperforms all baselines in fault
localization, and is better than existing deep-learning methods in
automated program repair. Compared with the typical template-
based work TBar, TRANSFER can correctly repair 6 more bugs (47
in total) on Defects4J.
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1 INTRODUCTION
Fault localization (FL) and automated program repair (APR) are
two consecutive tasks for automatic software debugging. Fault
localization provides the suspicious fault locations and then APR
tries to repair them. Since 80% of the total software cost is spent
on finding software faults [46], fault localization approaches have
been widely studied to reduce the heavy burden on developers [2, 5,
20, 24, 28, 37, 45, 59, 61, 63, 64]. Fault localization can be conducted
at different granularities, such as class [15, 66], method [25, 26, 37],
and statement [1, 28]. The finer the localization granularity is, the
easier the subsequent bug repair task would be. Thus we prefer
fault localization at the statement level. Based on the located faulty
lines of code, many APR approaches have been proposed to fix the
faults [9, 14, 16, 17, 21–23, 27, 31–33, 35, 36, 39, 50, 55, 58, 67].

Traditional fault localization approaches, such as spectrum-based
and mutation-based methods, adopt manually extracted features
to locate suspicious code elements [1, 2, 18, 30, 41, 43, 44, 57, 61–
63]. Spectrum-based fault localization (SBFL) produces a suspicious
score for each code element (i.e., class, method or statement) by
performing statistical analysis of failed/passed test cases. Mutation-
based fault localization (MBFL) applies specific mutation operators
to the original code elements and analyzes the execution of the
mutants. Besides SBFL and MBFL, other features including code
complexity, code change frequency, and text similarity are also lever-
aged to improve fault localization [25, 28, 51]. Hybrid approaches
have also been proposed to combine multiple suspicious scores
from different FL techniques [26, 59].
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Recently, deep learning-based approaches, such as DeepFL [25]
and DeepRL4FL [28], are proposed for fault localization and have
achieved promising results. DeepFL improves fault localization by
integrating more than 200 features from spectrum-based, mutation-
based, complexity-based, and textual similarity features. DeepRL4FL
improves fault localization performance at the statement andmethod
level by incorporating representation learning of code coverage,
data dependency, and code semantic. However, these approaches
have two major limitations. First, although deep semantic infor-
mation has been proven to be effective in code representation
[3, 4, 42, 49, 53, 54, 56, 60, 65], the deep semantic features of source
code are ignored by DeepFL, and DeepRL4FL only considers sim-
ple semantic representation by the fully connected layer after the
concatenation of word embeddings at the statement level; second,
although the bug-related knowledge extracted from historical bug
reports and bug-fix commits is helpful for bug detection [29, 47],
the existing approaches largely ignore such bug-related knowledge.
In this work, we consider the deep semantic features of source
code and the transferred knowledge from open-source bug data to
further improve fault localization.

Having obtained the suspicious code returned by FL techniques,
the template-based repair methods are widely used for automated
program repair [9, 14, 16, 21–23, 31, 32, 35, 36, 50, 55, 58]. These
methods utilize fix templates predefined or extracted from similar
code snippets to repair specific bugs. Among them, TBar [32] uses
15 manually-extracted common fix templates and selects them one
by one in a predefined immutable order to generate possible patches.
Recently, the encoder-decoder based neural program repair tech-
niques have been presented to generate code repair patches beyond
predefined templates [7, 17, 27, 39, 52]. However, they intend to
produce the frequent repair patterns and words in the training set
and ignore the project specific information [67]. Recoder [67] learns
syntax-guided edits (i.e., templates) and replaces placeholders with
possible project specific identifiers to optimize neural program
repair. Since template-based APR methods naturally adopt local
information in filling templates, we leverage the deep semantic fea-
tures and transferred knowledge to help select better fix templates
for efficient repair and remove plausible but incorrect patches.

In this work, we propose TRANSFER, a novel deep learning-
based approach to fault localization and program repair by incorpo-
rating the deep semantic features and transferred knowledge from
the large-scale open-source bug datasets. More specifically:

1) We construct two large-scale bug datasets collected from high-
quality GitHub projects to learn bug-related knowledge for fault
localization (𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 ) and automated program repair (𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 ),
respectively. We choose 11 kinds of bug-fix templates from TBar
[32] based on the bug popularity and treat them as the possible bug
types. Based on these 11 bug types, we then build 11 datasets con-
sisting of 785,134 samples as our fault localization dataset𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 .
We also use 408,091 bug-fix commits and their bug types to con-
struct our program repair dataset 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 . For each bug type, we
train a BiLSTM-based binary classifier to predict whether or not
one method contains a bug of this type in a specific location. We
also train a BiLSTM-based multi-classifier model to predict which
fix template should be tried to repair one suspicious statement. The
learned classifiers will be reused to transfer bug-related knowledge
to target projects.

2) For the fault localization task (TRANSFER-FL), we extract each
statement and its contextual method of a target project to obtain
its deep semantic features by performing the 11 binary classifiers
trained on 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 . The semantic features, together with existing
spectrum-based and mutation-based features, are further used to
train an MLP-based (Multi-layer Perceptron) ranking model for all
statements. In this way, we generate the suspicious score of each
statement from the MLP-based ranking model for fault localization.

3) For the program repair task (TRANSFER-PR), based on the
BiLSTM-based multi-classifier trained on 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 as the trans-
ferred knowledge, we further fine-tune the model parameters on
the target project. Given an unseen and faulty statement, the 11-
dimension vector output by the multi-classifier represents the prob-
abilities for selecting the corresponding fix template. The selection
order of fix templates based on these probabilities is used to improve
program repair.

We conduct extensive experiments on 395 real software faults
from the widely used Defects4J benchmark [19] (V1.2.0) to evaluate
our proposed approach. The experimental results show that, for
the fault localization task, our FL method (TRANSFER-FL) signifi-
cantly outperforms all baselines including 3 typical spectrum-based
methods, 1 mutation-based method and 2 recent deep learning-
based methods. Specifically, our approach increases the faults hit
by 13/16/29 on Top-1/3/5, respectively. For the automated program
repair task, our APR method (TRANSFER-PR) outperforms both the
state-of-the-art template-based repair technique TBar [32] and the
state-of-the-art deep learning-based repair technique CURE [17].
Compared with the strong baseline Tbar, TRANSFER (the combi-
nation of FL and PR) can work together to correctly repair 6 more
bugs (47 in total) on Defects4J.

The main contributions of this paper are as follows:

• We build two large-scale open-source bug datasets, and de-
sign BiLSTM-based classifiers to learn deep semantic features
of statements for fault localization and program repair.
• Wepropose TRANSFER, which leverages the semantic-based,
spectrum-based, and mutation-based features for effective
fault localization and leverages the semantic-based features
for effective program repair.
• We conduct extensive experiments on widely-used bench-
mark Defects4J to evaluate our approach, and the experi-
mental results confirm that our approach is effective.

2 RELATEDWORK
Learning-based Fault Localization. Learning-to-Rank [34] is an
important approach in information retrieval area, which utilizes su-
pervised machine learning to solve ranking problems. Some recent
studies apply the Learning-to-Rank strategy to fault localization
[5, 26, 51, 59], which takes multiple features as inputs from different
sources, such as suspicious scores from SBFL and MBFL techniques.
Among them, the pairwise training is frequently used to rank faulty
elements before correct ones. Recently, deep learning-based ap-
proaches are proposed, such as DeepFL [25] and DeepRL4FL [28],
which achieve promising results for fault localization. DeepFL im-
proves fault localization by integrating more than 200 features from
four traditional feature groups but misses the deep semantic fea-
tures. DeepRL4FL combines a coverage representation approach
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with code representation learning for fault localization, which sim-
ply uses the fully connected layer with the concatenation matrix
of word embeddings at the statement level. Both deep learning-
based methods have not captured the deep semantic features of
source code well, especially the sequential dependencies of tokens,
which limits the effectiveness of statement-level fault localization.
Grace[38] is another deep learning-based method which leverages
GNNs (Gated Graph Neural Networks) to learn valuable features
from the graph-based coverage representation. However, it removes
all children nodes of the statement structures of ASTs (Abstract
Syntax Trees), which is useful for method-level FL but misses the
statement-level semantics. Moreover, the method-level fault local-
ization effectiveness of Grace is worse than DeepRL4FL, so it is not
included in our fault localization experiments.

Template-based program repair. Template-based program re-
pair approach is a widely studied research area in APR, which uti-
lizes predefined fix templates to fix specific bugs. The repair process
can be basically divided into four steps, i.e., fault localization, fix
template selection, donor code search, and patch candidate valida-
tion. The first 3 steps of them determine the final effectiveness of
the corresponding repair technique. Typical template-based pro-
gram repair techniques include TBar [32], Simfix [16], Avatar [31],
FixMiner [21] and so on. Among them, TBar [32] is the state-of-
the-art template-based repair technique, which contains 15 com-
monly used fix templates and achieves a good performance on the
benchmark Defects4J [19]. However, the approach of fix template
selection has not been well studied, which influences the entire
program repair task.

Deep learning-based program repair. Recently, some studies
treat the program repair task as a statistical machine translation
task, and adopt the widely-used encoder-decoder architecture to
learn to generate possible patches. DLFix [27] proposes an efficient
way to embed the contextual information into the faulty statement.
CoCoNuT [39] combines CNNs (Convolutional Neural Networks)
and a new context-aware neural machine translation architecture to
generate patches token by token. CURE [17] pre-trains a language
model to extract bug-fix knowledge and propose a new code-aware
search strategy to reduce the search space. Recoder [67] learns
syntax-guided edits (i.e., templates) and replaces placeholders with
possible project specific identifiers to optimize neural program
repair. Nevertheless, the project specific information is hard to learn
and the frequent repair patterns and words appearing in training
sets are more likely to be selected. In contrast, template-based APR
methods naturally adopt local information to fill templates, but they
cannot effectively select fix templates. In this work, we address the
template selection problem by learning useful semantic knowledge
from open source code, while retaining the advantages of template-
based techniques. The recent deep learning-based program repair
methods including DLFix [27], CoCoNuT [39] and CURE [17] are
used as baselines in this paper.

3 PROPOSED APPROACH
3.1 Overview
In order to improve the performance of statement-level fault local-
ization and automated program repair, the deep semantic features
of statements and the transferred knowledge from large-scale bug

datasets are leveraged in our approach. As shown in Figure 1, our
approach, TRANSFER, mainly includes three components. The first
component (Section 3.2) is designed to learn transferred bug-related
knowledge from our two large-scale open-source bug datasets,
which includes 11 different binary classifiers to detect whether one
statement has corresponding bugs and one multi-classifier to pre-
dict which fix template should be used for a faulty statement. Based
on the transferred knowledge, the second component (TRANSFER-
FL, Section 3.3) aims to improve fault localization with the deep
semantic features, and the third component (TRANSFER-PR, Sec-
tion 3.4) can improve automated program repair by predicting the
order of fix templates to be used.

3.2 Learning Transfer Knowledge
3.2.1 Extraction of Bug-Fix Commits for Different Bug Types. We
first collect and analyze a large number of historical bug-fix com-
mits in open source projects. Specifically, we collect 2,000 open
source Java projects with most stars on GitHub. Four projects (i.e.,
Joda-Time, Closure compiler, Apache commons-lang, and Apache
commons-math) are removed from the collected projects because
they also exist in the target benchmark (i.e., Defects4J). We utilize
the approach described in [48] to extract all commits relevant to bug
fix. Specifically, a commit is considered bug-relevant if its message
contains keywords such as "error", "bug", “fix”, “issue”, "mistake",
"incorrect", "fault", "defect", "flaw", "type", etc. We keep the commits
that modify code in only one method, and in total 1,010,628 commits
are collected.

We then identify bug types from the bug-fix commits. Given that
the extracted commits are related to bug fix, if the code modifica-
tions of a commit match the change actions defined in a specific fix
template, the code element before this commit is made is consid-
ered to contain the corresponding type of bugs. A fix template [32]
defines a pattern of code modifications, which is applied to a faulty
code element to help generate possible patches. If a buggy code
element 𝑐 is repaired after applying the fix template 𝑓 𝑡 , we say that
𝑐 contains bugs with a type corresponding to 𝑓 𝑡 . We collect all 15
fix templates defined in TBar [32], and the corresponding bug type
of each fix template is shown in Table 1.

We implement an AST-based (Abstract Syntax Tree) syntax
checker through an AST-based code differencing algorithm (similar
to GumTree[12]) and a rule-based matching tool that matches the
edits to the fix templates shown in Table 1. On the one hand, once
a fix template is identified, the code element before the commit
is tagged with the corresponding bug type. Note that a commit
may match multiple fix templates, because the predefined code
change actions in different fix templates may overlap. As the ex-
ample shown in Table 2, both Mutate Conditional Expression and
Mutate Variable fix templates are matched, while the former consid-
ers the modification from 𝑎 >= 𝑎 to 𝑎 >= 𝑏 and the latter considers
that from 𝑎 to 𝑏. On the other hand, if no fix template is identified,
the commit will be discarded. Simultaneously, we mark the start
line of the statement where modification is located as the faulty
position. Still taking Table 2 as an example, the line 2 is marked as
faulty position because it is the start line of the If Statement which
wraps the modification. To verify the correctness of the labeling
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Figure 1: An Overview of TRANSFER

process using our syntax checker, we have randomly sampled 100
results, and checked that they are all accurate.

After applying the syntax checker, we find that the numbers of
commits corresponding to 4 bug types are very small (less than
100), which are difficult to be utilized for the subsequent learning
tasks, so we only study the remaining 11 bug types (shown in Table
4) in this paper. In total, 408,091 commits are extracted with the
annotations of bug types and faulty positions.

3.2.2 Dataset Construction.

1) Construction of 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 . Having collected the bug-fix com-
mits tagged with bug types, we assign each commit to one or more
groups (11 in total) according to its bug type(s). Then, for each
group, we further extract all the methods before the commits were
made as the positive samples. Each positive sample consists of
two parts: 1) the faulty statement, which marked with <BOS> and
<EOS>, and 2) the contextual method of the faulty statement. The
first column in Table 3 gives the positive sample to the commit
in Table 2 for Mutate Variable fix template. In this example, since
the faulty code element is the variable 𝑎 in line 2, whose nearest
statement-type ancestor is the if statement wrapping it. Thus, we
add the marks <BOS> and <EOS> at the start and end position of
line 2 respectively. Since the commit is also tagged with the bug
type corresponding to Mutate Conditional Expression, for this fix
template, the generated positive sample is the same as that of Mu-
tate Variable, because the nearest statement-type ancestor of the
faulty code element 𝑎 >= 𝑎 is also the if statement.

To collect the negative samples, we propose a new approach. We
first look for another statement in the same method, which contains
the same necessary syntax ingredients as the positive sample. The

necessary syntax ingredients for each fix template (bug type) are
underlined in the second column in Table 1. If no such statement
is found in the method, we will expand the scope and continue
searching in the same Java file. We collect all statements containing
the necessary syntax ingredients and the corresponding methods
they belong to as negative sample candidates, and then select one of
them randomly. However, if no suitable negative samples are found,
the corresponding positive samples will be discarded in order to
construct a balanced dataset.The second column in Table 3 shows a
negative sample corresponding to the already generated positive
sample in the first column for Mutate Variable fix template. The
necessary syntax ingredient of Mutate Variable is a variable code
element, as long as a statement contains at least one variable, it
can be selected and marked to generate a negative sample. Thus,
both 𝑟𝑒𝑡𝑢𝑟𝑛 𝑎; and 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏; statements can be marked. After the
random selection, the former is finally marked and the negative
sample is generated.

Finally, 11 datasets containing 392,567 positive samples and the
same number of negative samples (785,134 in total) are constructed
for the subsequent fault localization task (the detailed statistics are
shown in Table 4), which are called collectively as 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 .

2) Construction of 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 . For program repair, given a faulty
statement, our goal is to select the correct fix templates to repair it,
which can be regarded as a multi-classification task. Thus, for each
commit extracted in Section 3.2.1, we only keep the method before
the commit was made and categorize it into one of the 11 predefined
bug types. As a bug-fix commit can be tagged with one or more
bug types, we assign it to the bug type that is deeper in the AST
hierarchy. Intuitively, a deeper AST node needs a relatively simpler
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Table 1: 15 Fix Templates and the Corresponding Bug Types

Fix Templates Corresponding Bug Types
Insert Cast Checker At least one cast expression exists without checking the compatibility of the original type and the cast type.
Insert Range Checker At least one array (collection) access exists without checking whether the index (key) is beyond the scope.
Insert Null Pointer Checker At least one field (expression) is used without checking if it has a null type.
Insert Missed Statement Missing a specific type of statement including method invocation/return/if/try-catch statement.
Mutate Conditional Expression A conditional expression should be added, removed or modified.
Mutate Data Type The data type used in cast expression or variable declaration expression is incorrect.
Mutate Literal Expression The literal expression used in the statement is incorrect.
Mutate Method Invocation Expression The name or at least one of the parameters of the method invocation expression is incorrect.
Mutate Class Instance Creation 𝑠𝑢𝑝𝑒𝑟 .𝑐𝑙𝑜𝑛𝑒 () method should be used rather creating a new class instance in an overridden clone method.
Mutate Integer Division Operation An integer literal is used in division operation and results in the loss of accuracy.
Mutate Operators At least one relational/arithmetic/instanceof/parentheses operator is incorrectly used.
Mutate Return Statement The expression in return statement is incorrect.
Mutate Variable The variable used in the statement is incorrect.
Move Statement A statement is placed in an incorrect position.
Remove Buggy Statement A statement should not appear in the current position and is expected to be removed.

Table 2: A Java Code Example Before and After the Commit

Method Before Commit Method After Commit
1
2
3
4
5
6

public int max(int a, int b) {
if (a >= a) {

return a;
}
return b;

}

public int max(int a, int b) {
if (a >= b) {

return a;
}
return b;

}

Table 3: An Example Pair of Positive and Negative samples
for the fix template Mutate Variable

Positive Sample Negative Sample
1
2
3
4
5
6

public int max(int a, int b) {
<BOS> if (a >= a) { <EOS>

return a;
}
return b;

}

public int max(int a, int b) {
if (a >= a) {
<BOS> return a; <EOS>
}
return b;

}

repair template with a smaller change area, which is preferred by
actual developers. For example, for the method (before the commit
was made) shown in Table 2, the corresponding AST is constructed
in Figure 2. We can see that the code element focused on byMutate
Conditional Expression is the conditional expression node whose
depth is 4, while the code element focused on by Mutate Variable is
the variable node 𝑎 (the child of Right Operand node) whose depth
is 7. Thus, the Mutate Variable should be selected as the unique
label because it focuses on a deeper AST node.

In this way, we construct a dataset with 11 categories and 408,091
samples in total, which is called𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 . Each sample consists of a
faulty statement with the contextual method and its corresponding
bug type. The detailed statistics are shown in Table 4.

Table 4: Statistics of 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 and 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 , where positive
and negative samples are seperated by the slashes.

Fix Templates
#Samples

in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙

#Samples
in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟

Insert Null Pointer Checker 5660/5660 7600
Insert Missed Statement 47120/47120 54445
Mutate Conditional Expression 31167/31167 30530
Mutate Data Type 3293/3293 5178
Mutate Literal Expression 35536/35536 55044
Mutate Method Invocation Expr. 198754/198754 166943
Mutate Operators 1673/1673 2326
Mutate Return Statement 12511/12511 20680
Mutate Variable 29918/29918 35156
Move Statement 7313/7313 7812
Remove Buggy Statement 19622/19622 22377
Total 392567/392567 408091

Figure 2: An Example to Illustrate the Selection of the
Unique Bug Type
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3.2.3 Learning Knowledge for Fault Localization.

1) The design of binary classifiers. We build 11 Bi-LSTM based
binary classifiers with same structures to judge whether the bugs
with corresponding bug type exist in the code or not. The overall
architecture of themodel is shown in Figure 3. Sincewe are studying
statement-level fault localization, the input of the model is a token
sequence < 𝑡1, 𝑡2, ..., 𝑡𝑁 > including the specified statement and
its contextual method, where 𝑁 represents the length of the token
sequence. Then, the token sequence is fed into an embedding layer
with the pre-trained word2vec [40] parameters𝑊𝑒 ∈ R |𝑉 |×𝑑 where
𝑉 is the vocabulary size and 𝑑 is the embedding dimension of each
token, to generate a sequence of token vectors < 𝑒1, 𝑒2, ..., 𝑒𝑁 >.
The vector representation 𝑒𝑘 of token 𝑡𝑘 can be obtained by:

𝑒𝑘 = 𝑊𝑒
T𝑥𝑘 (1)

where 𝑥𝑘 is the one-hot representation of token 𝑡𝑘 . Next, we utilize
LSTM [13], one type of recurrent neural network, to extract the
contextual semantic features containing token sequential dependen-
cies, while the fully connected layer after the concatenation matrix
of token embeddings used in DeepRL4FL [28] in statement-level
fault localization cannot extract such dependency relationships.

In order to obtain richer dependency information among tokens,
we adopt a bidirectional LSTM (Bi-LSTM), the output of which is a
new state generated by concatenating the hidden states from both
directions at time 𝑡 :

−→
ℎ𝑡 =

−−−−→
𝐿𝑆𝑇𝑀 (𝑒𝑡 ),

←−
ℎ𝑡 =

←−−−−
𝐿𝑆𝑇𝑀 (𝑒𝑡 ), ℎ𝑡 = [

−→
ℎ𝑡 ,
←−
ℎ𝑡 ] (2)

To extract the most important features for each dimension, we keep
the hidden states of all time steps, which are then pushed into a
stack and sampled by max pooling. We assume that the result after
processing of max pooling is 𝑔, which is calculated as follows:

𝑔 = [ max
1≤𝑡 ≤𝑁

(ℎ𝑡1), max
1≤𝑡 ≤𝑁

(ℎ𝑡2), ..., max
1≤𝑡 ≤𝑁

(ℎ𝑡 ·2𝑚)] (3)

where 𝑚 represents the dimension of hidden states. Finally, we
put 𝑔 into a dense layer with 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 activation function, and the
output indicates the probability of containing the corresponding
type of bugs, which is exactly the semantic feature we need.

2) Training the binary classifiers. We divide the training task into
two phases. In the first phase, for each of the 11 bug types, we
use 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 for model training, after which the optimal model
parameters are saved. We call the knowledge learned in this phase
as transferred knowledge. In the second phase, each suspicious state-
ment with its contextual method in target datasets is input into the
trained models to obtain 11 deep semantic features. In addition, as
mentioned above, the annotated statements in both positive and
negative samples in 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 must contain the necessary syntax
ingredients for its corresponding bug type. Therefore, in the second
phase, for each suspicious statement in target projects, we first
judge whether the statement contains the necessary syntax ingre-
dients required by each bug type. If it does, this statement and its
contextual method will be input into the binary classifier for the
corresponding bug type to obtain the output probability, otherwise
the probability is set to 0 if the necessary syntax ingredients miss.
In this way, the 11-dimension deep semantic features are extracted
for all suspicious statements in target projects, which will be used
in the subsequent fault localization task.

Figure 3: Bi-LSTM based Binary Classifier Model for Learn-
ing Transfer Knowledge for Fault Localization

3.2.4 Learning Knowledge for Program Repair. For selecting cor-
rect fix templates to enhance the existing template-based program
repair approaches, we build a BiLSTM-based multi-classifier, whose
architecture is the same as the binary classifier described in Section
3.2.3, except the dimension of the output layer, which is changed
from 2 to 11 (i.e., the number of bug types). We feed the large-scale
𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 into the multi-classifier for model training, and in this
way, the transferred knowledge for judging which fix templates
should be selected first to generate patches is learned, which can
be used for the subsequent program repair task.

3.3 TRANSFER-FL: Effective Fault Localization
based on Transferred Knowledge

3.3.1 Spectrum-based and Mutation-based Features.

1) Spectrum-based Features. Spectrum-based fault localization
(SBFL) is one of the most widely studied fault localization ap-
proaches. SBFL approaches take source code and relevant test cases
as inputs, and output a sorted list of code elements ordered by sus-
picious scores, which are calculated from the execution information
of test cases. It has been found that the results of SBFL approaches
can serve as part of input features for training learning-to-rank
models in some recent studies [16, 21, 31, 33]. Learning-to-rank
approaches have been proved to help better fault localization by
optimizing the combination of features [26, 51]. In this work, we
adopt the learning-to-rank method and select 3 most commonly
used SBFL techniques (i.e., Tarantula [18] , Ochiai [1] and DStar
[57]) to generate features for the spectrum-based feature group.
The equations of calculating suspicious scores for the three SBFL
techniques are as follows, where𝑇𝑓 (𝑒)/𝑇𝑝 (𝑒) represents the number
of failed/passed tests executing code element 𝑒 , while 𝑇𝑓 (𝑒)/𝑇𝑝 (𝑒)
represents the number of failed/passed tests that do not execute 𝑒 ,
and 𝑇𝑓 /𝑇𝑝 represents the number of all failed/passed tests.

𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎 : 𝑆𝑢𝑠 (𝑒) =
𝑇𝑓 (𝑒)/𝑇𝑓

𝑇𝑓 (𝑒)/𝑇𝑓 +𝑇𝑝 (𝑒)/𝑇𝑝
(4)
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𝑂𝑐ℎ𝑖𝑎𝑖 : 𝑆𝑢𝑠 (𝑒) =
𝑇𝑓 (𝑒)√

𝑇𝑓 · (𝑇𝑓 (𝑒) +𝑇𝑝 (𝑒))
(5)

𝐷𝑆𝑡𝑎𝑟 : 𝑆𝑢𝑠 (𝑒) =
𝑇𝑓 (𝑒)∗

𝑇𝑝 (𝑒) + (𝑇𝑓 (𝑒))
(6)

2) Mutation-based Features. Mutation-based fault localization
(MBFL) is another approach which calculates suspicious scores by
analyzing the changes of execution results between the original
code element and its mutants. Similar to SBFL, the outputs of MBFL
approaches can also serve as input features for learning-to-rank
models [25, 26]. MBFL approaches need to additionally specify the
set of mutation operators as well as the granularities of failure out-
puts/messages. We adopt the four types of granularities proposed
by TraPT [26]: (1) passed/failed information, (2) exception type
information, (3) exception type and message, (4) exception type,
message and the full stack trace of exception.

As described in Metallaxis [44], the formulae from SBFL ap-
proaches can be utilized to calculate suspicious scores for mutants,
and the highest score among all mutants is then selected as the
suspicious score of the corresponding original code element. Equa-
tion 7 takes Ochiai algorithm as an example, where 𝑀 (𝑒) denotes
all mutants of code element 𝑒 , 𝑇 (𝑚)

𝑓
(𝑒) denotes the number of

originally failed tests which are impacted by mutant𝑚, 𝑇 (𝑚)𝑝 (𝑒)
denotes the number of originally passed tests which are impacted
by mutant 𝑚, and so on. We choose the frequently-used Ochiai
algorithm for Metallaxis to extract the mutation-based features.
Finally, 4 mutation-based features are extracted because 4 types of
granularities are considered which are mentioned above.

𝑆𝑢𝑠 (𝑒) = max
𝑚∈𝑀 (𝑒)

𝑇
(𝑚)
𝑓
(𝑒)√

𝑇
(𝑚)
𝑓
· (𝑇 (𝑚)

𝑓
(𝑒) +𝑇 (𝑚)𝑝 (𝑒))

(7)

3.3.2 Deep Semantic Features. Both suspicious scores generated
by SBFL and MBFL approaches can be used as input features for
a learning-to-rank model to improve the effectiveness of fault lo-
calization. However, the semantic features have not been included
yet, which can provide useful information from a different aspect.
In fault localization research area, especially when program data
is compilable and executable, the dynamic execution information
is still the most frequently used feature [25, 26, 51]. In contrast,
the use of static semantic features is relatively preliminary, such
as DeepRL4FL [28], which simply uses the fully connected layer
with the concatenation matrix of word embeddings at the statement
level. Therefore, our goal is to propose a more effective way of ex-
tracting and utilizing contextual semantics to further improve the
effectiveness of fault localization. As described in Section 3.2.3, we
have obtained the 11-dimension deep semantic feature of each sus-
picious statement in the target dataset by applying the transferred
knowledge learned from the large-scale 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 .

3.3.3 Fault localization with transferred knowledge. Through the
above steps, three feature groups are obtained, including 3 spectrum-
based features, 4 mutation-based features and 11 deep semantic
features.We can combine these features in a learning-to-rankmodel

to predict the probability of being faulty for each suspicious state-
ment in the target project. Compared with the task in Section 3.2.3
to judge whether a suspicious statement contains bugs with specific
types, the current task can also be regarded as a binary classifica-
tion task to judge whether bugs exist in a suspicious statement
no matter what bug type it is. Thus, a model based on the MLP
(Multi-Layer Perceptron) architecture is designed to achieve this
goal, which is shown in Figure 4. Before fed into the model, the
spectrum-based and mutation-based features are normalized by the
ranking positions, because the suspicious scores before normaliza-
tion are not necessarily in the range [0, 1), while the deep semantic
features are. The equation of calculating the normalized score of
suspicious statement 𝑒 is as follows:

𝑆𝑢𝑠 (𝑒) = 1 − 𝑖𝑛𝑑𝑒𝑥 (𝑒)
𝑙𝑒𝑛(𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑖𝑠𝑡) (8)

where 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑖𝑠𝑡 is a sorted list containing all suspicious state-
ments in the target project. It is sorted according to the suspi-
cious score before normalization of each statement from biggest
to smallest. Function 𝑙𝑒𝑛(𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑖𝑠𝑡) returns the length of
𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑖𝑠𝑡 , and function 𝑖𝑛𝑑𝑒𝑥 (𝑒) returns the position where
the suspicious score of 𝑒 last appears in the 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑖𝑠𝑡 . For
example, if 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑖𝑠𝑡 contains 5 statements {𝐴, 𝐵,𝐶, 𝐷, 𝐸},
and the corresponding suspicious scores are {2.0, 1.0, 0.5, 0.5, 0.2},
then the normalized scores of the five statements are calculated as
{0.8, 0.6, 0.2, 0.2, 0.0}. Thus, the three groups of normalized features
can now be fed into the model. Since the number of features in
deep semantic group exceeds the other two groups a lot, it may
have an unexpected greater impact on the results. Thus, we first
put the 11 semantic features into an MLP (Semantic Fusion Layer in
Figure 4), the output dimension of which is set as 3. Then, the new
generated 3-dimension semantic feature is concatenated with other
two feature groups to obtain a 10-dimension vector, which is then
fed into another MLP (Multi-Source Fusion Layer in Figure 4) for
automatic feature extraction. Finally, the data flows to the output
layer, and a 2-dimension vector normalized by 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 activation
function is generated. The output vector gives the probability of
being faulty for the current suspicious statement, which can be
regarded as a new suspicious score. A new suspicious list can be
generated according to the suspicious scores of all statements.

3.4 TRANSFER-PR: Effective Program Repair
based on Transferred Knowledge

3.4.1 Template-based program repair. Template-based automated
program repair is widely studied [16, 21, 31, 32], which utilizes fix
templates predefined or extracted from similar code snippets to
repair specific bugs. The repair process can be basically divided
into four steps: fault localization, fix template selection, donor code
search, and patch candidate validation, corresponding to step 1
to step 4 in Algorithm 1 respectively. The first 3 steps are closely
related to patch generation, while the last step is for validation.
Therefore, under the premise that a template-based repair technique
has been selected, that is, the set of fix templates to be used has
been determined, we can optimize the first 3 steps to tune the repair
performance. Step 1 corresponds to our attempt to optimize the
effectiveness of fault localization tasks in Section 3.3. For step 2,
a naive way is used to traverse all fix templates (e.g., predefined
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Figure 4: MLP-based Ranking Model for Fault Localization

order or random traversal) in traditional template-based program
repair techniques, which is unable to give guidance for which fix
template should be selected first to generate patch candidates for a
specific input. This leads to a problem during bug fixing. Assuming
that the real faulty statement is reached, the repair technique may
still generate a plausible but incorrect patch candidate (i.e., a patch
can pass all tests but is regarded as a incorrect patch after a manual
check) because a wrong fix template is tried earlier. Once a plausible
patch is generated, the entire repair process will be terminated
according to the commonly-used repair setup, and finally the actual
fix template has no chance to be selected. Therefore, we convert
the fix template selection problem into a multi-classification task,
which will be described in detail below.

3.4.2 Fix template selection with transferred knowledge. In Section
3.2.4, we have obtained the transferred knowledge by training the
multi-classifier on large-scale 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 . For a target project, we
can first extract existing bug-fix commits from its development his-
tory, and then use the syntax checker to tag them with the unique
labels, just like what we have done to build 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 in Section
3.2. Then, the newly extracted samples can be used to further fine-
tune the model parameters of the multi-classifier, which is already
trained on 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 . In this way, we merge the transferred knowl-
edge learned from 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 with the specific information of the
target project. For a faulty statement with its contextual method,
the fine-tuned multi-classifier is used to predict which fix templates
should be selected first to generate patches, which is expected to
optimize the fix template selection task at step 2 in Algorithm 1.

4 EVALUATION
In this section, we conduct the extensive experiments to evaluate
the our approach on the fault localization and program repair tasks.

4.1 Benchmark Dataset
WeuseDefects4J (V1.2.0) benchmark [19] in our experiments, which
is widely used for the evaluation of fault localization and automated
program repair tasks [16, 25, 26, 28, 32]. This benchmark is com-
posed of 6 open source projects containing 395 real faults.

Algorithm 1 The process of template-based program repair
Input: The project to be repaired 𝑃 and its test cases 𝑇 ;
Output: The patch candidate 𝑐 that can pass all test cases;
1: 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 ← 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 ();
2: 𝑐 ← 𝑁𝑈𝐿𝐿;
3: 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑖𝑠𝑡 ← 𝑓 𝑎𝑢𝑙𝑡_𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑃, 𝑇 );
4: // step 1
5: for each 𝑝𝑜𝑠 ∈ 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑖𝑠𝑡 do
6: // step 2
7: for each 𝑓 𝑡 ∈ 𝑓 𝑖𝑥_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠 do
8: 𝑑𝑜𝑛𝑜𝑟_𝑐𝑜𝑑𝑒_𝑙𝑖𝑠𝑡 ← 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑜𝑛𝑜𝑟_𝑐𝑜𝑑𝑒 (𝑝𝑜𝑠, 𝑓 𝑡);
9: // step 3
10: for each 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝑑𝑜𝑛𝑜𝑟_𝑐𝑜𝑑𝑒_𝑙𝑖𝑠𝑡 do
11: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑝𝑎𝑡𝑐ℎ(𝑝𝑜𝑠, 𝑓 𝑡, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡);
12: // step 4
13: if 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒, 𝑇 ) 𝑖𝑠 True then
14: 𝑐 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
15: return 𝑐;
16: end if
17: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 ← 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 ();
18: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 > 𝑇 𝐼𝑀𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷

then
19: return 𝑐;
20: end if
21: end for
22: end for
23: end for
24: return 𝑐;

4.2 Experimental Settings
As shown in Table 5, columns 2 to 5 list the experimental setups
for running the BiLSTM-based binary classifiers in Section 3.2.3
(𝑴𝒐𝒅𝒆𝒍𝒃𝒊), the MLP-based ranking model in Section 3.3 (𝑴𝒐𝒅𝒆𝒍𝒓𝒌 ),
the BiLSTM-based multi-classifier trained on 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 in Section
3.2.4 (𝑴𝒐𝒅𝒆𝒍𝒎𝒖 ), and the BiLSTM-based multi-classifier fine-tuned
on Defects4J in Section 3.4 (still 𝑴𝒐𝒅𝒆𝒍𝒎𝒖 ), respectively. It should
be noted that all hyper-parameters are determined based on the
corresponding validation set through grid search. For obtaining
spectrum-based and mutation-based features for fault localization
task, we utilize GZoltar [6] (V1.7.2) and PIT [8] (V1.1.5) tools. For
PIT, we adopt the same modifications following TraPT [26] and
DeepFL [25].

When training the MLP-based ranking model, we adopt pairwise
approach because the goal of fault localization task is to rank the
faulty statements higher than the correct ones, while other rela-
tions are not considered. Since most of the suspicious statements
are not faulty, the number of positive samples is far less than that
of negative samples. Therefore, during training, we adopt down-
sampling and randomly select 10 negative samples for each positive
sample to generate sample pairs like <𝑠𝑝𝑜𝑠 , 𝑠𝑛𝑒𝑔>. Then, the hinge
function is utilized to calculate the loss of a sample pair. When
training the multi-classifier model, due to the imbalance of samples
among 11 different bug types on 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 , the down-sampling
approach is also adopted. We keep up to 10,000 samples for each
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Table 5: Setups for Experiments

Setups 𝑴𝒐𝒅𝒆𝒍𝒃𝒊 𝑴𝒐𝒅𝒆𝒍𝒓𝒌 𝑴𝒐𝒅𝒆𝒍𝒎𝒖 𝑴𝒐𝒅𝒆𝒍𝒎𝒖

Dataset 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 Defects4J 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 Defects4J
Batch Size 64 64 64 8
Epochs 30 30 15 30
Loss Function CE Hinge-loss CE CE
Input Dim 400 18(11+3+4) 400 400
Hidden Units 50 - 80 80
Optimizer Adam Adam Adam Adam
Learning Rate 1e-3 1e-3 1e-3 1e-4
Dropout Rate - 0.3 0.3 -
𝜆 for L2-Reg - 1e-4 1e-4 -

bug type. Finally, we use 10-fold cross validation on the fault local-
ization (column 3) and program repair tasks (column 5) to obtain
the experimental results. We set the running time of each repair
process to 3 hours, which is the same as TBar [32].

All the experiments are conducted on Ubuntu 18.04 server with
20 cores of 2.4GHz CPU, 384GB RAM and NVIDIA Tesla V100 GPUs
with 32 GB memory.

4.3 Evaluation Metrics
We adopt the following common evaluation metrics used in the
previous fault localization studies [25, 26, 28, 51]:

Top-N, which represents the number of faults with at least one
faulty statement located in the top N positions. Following previous
researches [25, 26, 28], Top-1, Top-3, and Top-5 are reported.

Mean First Rank (MFR): If there are multiple faulty statements
in a fault, localizing the first one is important. The MFR metric of
one project is the mean of the highest faulty statement’s rank of
each fault.

MeanAverageRank (MAR),which is computed as the average
rank of all faulty statements for each fault, and the MAR metric of
one project is the mean of the average rank of all its faults.

Among them, the bigger is better for Top-1/3/5 while the smaller
is better for MFR and MAR. For the program repair task, we use the
number of fixed faults to measure the effectiveness of a program
repair technique.

4.4 Results and Discussion
RQ1: How does TRANSFER-FL perform in statement-level
fault localization?

To answer this research question, we compare the effective-
ness of TRANSFER-FL with three SBFL techniques (i.e., Ochiai
[1], Tarantula [18] and DStar [57]) whose suspicious scores are
used to form the spectrum-based feature group in this paper, and
one MBFL technique (i.e., Metallaxis [44]) for mutation-based fea-
ture group, and two deep learning-based techniques (i.e., DeepFL
[25] and DeepRL4FL [28]). Note that the experimental results of
DeepFL are obtained after we make simple modifications (i.e., only
semantic-based and mutation-based features are kept) based on
its open source repository to meet the needs of statement-level
fault localization tasks, which is originally designed for method-
level. For DeepRL4FL, the state-of-the-art technique, since the open
source repository and relevant dataset are not publicly available,

Table 6: Fault Localization Results

Techniques Top-1 Top-3 Top-5 MFR MAR
Ochiai [1] 19 65 99 183.78 233.14
Tarantula [18] 19 63 97 189.28 241.58
Dstar [57] 20 65 99 183.75 233.52
Metallaxis [44] 13 36 63 512.28 649.41
DeepFL [25] 60 122 140 128.02 170.46
DeepRL4FL [28] 71 128 142 - -
TRANSFER-FL 84 144 171 79.97 120.47

we are not able to reproduce its results. Thus, we directly cite the
experimental results reported in their paper [28]1.

Table 6 presents the detailed experimental results. From the
table, we can see that TRANSFER-FL can perform all compared
techniques in all metrics. More specifically, compared with the
three SBFL techniques, the increased numbers of the faults hit on
Top-1,3,5 are 64+, 79+ and 72+, while the improvements on MFR
and MAR are 56.5% and 48.3%. When compared with the MBFL
technique Metallaxis, the increased numbers on Top-1, 3, 5 are 71,
108 and 108, while the improvements on MFR and MAR are 84.4%
and 81.4%. SBFL and MBFL methods only consider the dynamic
information generated by executing test cases, and lack the analyses
for program semantics.When compared with the two deep learning-
based methods, the increased numbers on Top-1,3,5 are 13+, 16+
and 29+, while the improvements on MFR and MAR are 37.5%
and 29.3%, showing that TRANSFER-FL significantly outperforms
the state-of-the-art deep learning-based methods. Since semantic
features are not used or just simply used by concatenating the
word embeddings in the existing deep learning-based methods, the
transferred knowledge learned from our built large-scale dataset
and the deep semantic features generated by 11 binary classifiers
can significantly enhance the effectiveness of fault localization.

RQ2:Howeffective are themain components of TRANSFER-
FL?

In this RQ, we explore the effectiveness of main components
in TRANSFER-FL. Since TRANSFER-FL is based on the fusion of
3 feature groups, we design 6 model variants, each of which rep-
resents a specific combination of features groups. As shown in
Table 7, the first 3 variants retain only one feature group, and the
following 2 variants retain the combinations {spectrum, semantic}
and {mutation, semantic}, respectively. The last variant retains all 3
feature groups (i.e., TRANSFER). Through the experimental results,
we find that under the restriction of using only one feature group,
𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 performs best on all 5 metrics, and 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐

performs better than 𝑣𝑎𝑟𝑎𝑖𝑛𝑡𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 on Top-1, while the results are
opposite on other 4 metrics. Next, compared with 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚
(𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛), 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑝𝑒𝑐+𝑠𝑒𝑚 (𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑚𝑢𝑡+𝑠𝑒𝑚) achieves sig-
nificant improvement, indicating that the semantic features can be
effectively integrated with existing traditional features to generate
richer information, which is beneficial for fault localization. Finally,
the experimental results of 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑎𝑙𝑙 on all 5 evaluation metrics

1Note that we find that the MFR and MAR results reported in DeepRL4FL [28] are
strangely very low (20.32 and 28.63, respectively). After checking the code and consult-
ing the authors of DeepRL4FL, we have to choose not to compare these two metrics
with DeepRL4FL.
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Table 7: Comparative analysis with different feature groups

Techniques Top-1 Top-3 Top-5 MFR MAR
𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 20 63 98 180.53 232.32
𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 25 51 71 253.27 350.03
𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 55 109 138 110.10 173.96
𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠𝑝𝑒𝑐+𝑠𝑒𝑚 49 91 120 118.80 174.64
𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑚𝑢𝑡+𝑠𝑒𝑚 70 121 152 93.98 148.41
𝒗𝒂𝒓 𝒊𝒂𝒏𝒕𝒂𝒍𝒍 84 144 171 79.97 120.47

Table 8: Repair Results under Perfect Fault Localization

Project DLFix CoCoNuT CURE TBar TRANSFER-PR
Chart 5 7 10 10 10
Closure 11 9 14 16 18
Lang 8 7 9 10 13
Math 13 16 19 20 20
Time 2 1 1 3 3
Mockito 1 4 3 3 3
Total 40 44 56 62 67

are better than those of all other variants, proving that each feature
group has a positive impact on the fault localization task.

RQ3: How does TRANSFER-PR perform in program re-
pair under perfect fault localization?

In order to evaluate whether TRANSFER-PR is effective or not,
we conduct experiments under perfect fault localization setup (i.e.,
the actual faulty statements are given). We then compare the repair
results of different methods. As shown in Table 8, DLFix [27], Co-
CoNuT [39], CURE [17] are encoder-decoder based deep learning
methods, while TBar [32] is the state-of-the-art template-based
method. TRANSFER-PR is implemented based on TBar, because the
predefined fix templates used in this paper are derived from it. The
experimental results show that TRANSFER-PR can fix 5 more bugs
(67 in total) than TBar, which reflects the improvement gained from
the optimized fix template selection mechanism. When compared
with deep learning-based repair methods, TRANSFER-PR can fix
11 more bugs than the state-of-the-art method CURE. Furthermore,
TRANSFER-PR achieves the best results on 5 out 6 projects. The
results show that using predefined high-quality fix templates and
optimizing the selection of fix templates can improve the repair
performance.

RQ4:CanTRANSFER, as awhole, improve the performance
of program repair?

In this RQ, we evaluate the effectiveness of TRANSFER (both
FL and PR) in automated program repair. As TRANSFER-PR is a
template-based approach derived from TBar [32], and TBar is the
best-performing repair method as shown in Table 8, we use TBar
as the baseline in this RQ. As described in TBar [32], there are
71 bug versions that can be fixed when the faulty statements and
the fix templates are both directly given. However, in actual repair
scenario, these two premises are not satisfied. Thus, we preform a
set of comparison experiments to explore how TRANSFER-FL and
TRANSFER-PR improve program repair in actual repair scenario
(both faulty statements and fix templates are unknown). Table 9
shows the repair results in different {FL Approach × PR Approach}

Table 9: Repair Experiments in Different Localization and
Repair Setups

Localization Repair #Not-fixed Bugs1 #Fixed
Approaches Approaches Time Pos. Pat. Bugs

Ochiai TBar 18 9 3 41
TRANSFER-PR 18 9 2 42

TRANSFER-FL TBar 10 12 6 43
TRANSFER-PR 10 12 2 47

1 Reasons for not-fixed bugs: Time (Timeout), Pos (Position) and Pat (Pattern).

setups. We find that the number of fixed bugs under {Ochiai, TBar}
setup (which is the default setup in TBar [32]) is 41, while the
number under {Ochiai, TRANSFER-PR} setup is 42, showing the
effectiveness of TRANSFER-PR method. In addition, the number
of fixed bugs under {TRANSFER-FL, TBar} steup is 43, indicating
that TRANSFER-FL can also help improve the repair performance.
Then, when both TRANSFER-FL and TRANSFER-PR are used (i.e.,
TRANSFER), there are 47 bugs can be fixed, which achieves the
best result. The detailed statistics of the fixed bugs corresponding
to 4 setups are shown in Figure 5-(a). Figure 5-(b) shows the bugs
which can be fixed in all 4 setups.

Table 9 also shows the number of not-fixed bugs and the cor-
responding reasons. We divide the reasons why a bug cannot be
successfully fixed into three categories: 1) Timeout: the faulty state-
ments are ranked too low in suspicious list to be found within a
limited time. 2) Position: a plausible but incorrect patch is generated
in another suspicious statement, when the real faulty statement
has not been reached. 3) Pattern: a plausible but incorrect patch is
generated due to a wrong fix template being selected. Table 9 also
shows that, after adopting TRANSFER-FL, the number of not-fixed
bugs with the reason of Timeout is significantly reduced (from 18
to 10). This result shows that many bugs that previously failed to
be located within a limited time have now been successfully found.
After adopting TRANSFER, there are still 24 not-fixed bugs, caused
by Timeout (10), Position (12), and Pattern (2). In our future work,
we will address these not-fixed bugs and further improve the repair
performance.

Figure 5: Overlapping Analysis for Program Repair Exper-
iment (C:Chart, Cl:Closure, L:Lang, M:Math, Moc:Mockito,
T:Time)
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5 DISCUSSION
5.1 Why Does it Work?
For the fault localization task, previous spectrum-based, mutation-
based, and deep learning-based methods either do not consider deep
semantic features, or just use some simple features by concatenating
the word embeddings, while our approach incorporates the deep
semantic features and transferred knowledge from the large-scale
open-source bug dataset. Specifically, we design 11 binary classifiers
to extract deep semantic features for predicting the probabilities of
containing bugs of different bug types.

For the program repair task, selecting the correct fix template
for the statement to be repaired is important, because if an incor-
rect fix template is selected, a plausible but incorrect patch may
be generated and the whole fix process will be terminated. Our
approach includes a multi-classifier, which learns deep semantic
features from historical data that contains knowledge about which
fix template should be selected. In this way, the number of plausi-
ble but incorrect patches decreases and the repair performance is
improved.

5.2 Threats to Validity
One threat to external validity is the target programming language
we use, i.e., the selected fix templates and generated datasets are all
for Java language. However, most of the fix templates can be gener-
alized to other languages because of the generic representation of
AST. On the other hand, there are sufficient projects in open source
communities (e.g., GitHub) to build datasets for other languages.
The second threat to external validity is that we use one defect
benchmark (Defects4J-V1.2.0) in our study. Although it is a widely-
used benchmark, Durieux et al. [10] showed that fault localization
and program repair techniques may overfit on this benchmark. To
reduce this threat, we have conducted a preliminary experiment
on a recent benchmark Defects4J-V2.0.0. The results (given in our
project page) show similar trend as that on Defects4J-V1.2.0 and
confirm the effectiveness of the proposed approach. In our future
work, we will conduct more comprehensive experiments to further
evaluate the generality of our methods on more defect benchmarks.

One threat to internal validity is the implementation of the syntax
analyzer developed by ourselves. In order to reduce the threat, the
analyzer is developed based on the widely used JDT framework
[11]. Another internal threat is the manual annotation for faulty
statements in Defects4J, because the standards to judge whether a
statement is faulty or not may be different. To reduce this threat,
we choose the standard given by the authors of Defects4J [45].

6 CONCLUSION
In this paper, we propose a fault localization method (TRANSFER-
FL) that incorporates the deep semantic-based features extracted by
learning the transferred knowledge from large-scale open-source
data. We also propose a program repair method (TRANSFER-PR) for
optimizing the selection of fix templates, which can be used together
with the fault localization method to improve the performance of
existing template-based program repair techniques. Our approach
TRANSFER (the combination of FL and PR) can fix 47 bugs on
Defects4J dataset, which is 6 more than that of the state-of-the-art
template-based repair technique TBar [32].

Our source code and experimental data are publicly available at:
https://github.com/mxx1219/TRANSFER. The code and data
can facilitate replication of our study. Furthermore, the large-scale
datasets 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑓 𝑙 and 𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑝𝑟 built by us can be utilized in
future automatic software debugging research.
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